1. 概述
高精度场景 :SIFT、SURF
实时性场景 :ORB、FAST、BRISK
复杂纹理/多尺度需求 :KAZE、AKAZE
算法 | 原理 | 优点 | 缺点 | 应用场景 |
---|---|---|---|---|
SIFT | 高斯金字塔+DoG检测 | 尺度/旋转不变性,高精度匹配 | 计算慢,专利限制 | 图像拼接、3D重建 |
SURF | Hessian矩阵+积分图像 | 速度较快,稳定性好 | 专利限制,对极端视角敏感 | 实时匹配、目标识别 |
ORB | FAST+BRIEF+方向优化 | 实时性强,无专利限制 | 匹配精度较低 | SLAM、移动端应用 |
Harris | 梯度矩阵特征值分析 | 速度快,实现简单 | 无尺度/旋转不变性 | 基础特征检测 |
FAST | 局部灰度差异检测 | 极速检测角点 | 无描述子,需结合其他算法 | 视频跟踪 |
BRISK | 尺度空间FAST+二进制描述 | 旋转不变性,高效 | 对噪声敏感 | 无人机导航 |
KAZE | 非线性扩散方程构建尺度 | 多尺度鲁棒性 | 计算耗时 | 医学图像分析 |
FREAK | 视网膜采样二进制描述子 | 匹配速度快 | 依赖外部关键点检测 | 移动端实时匹配 |
2. SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)
- 含义 : 基于尺度空间的特征检测算法,通过构建高斯差分金字塔检测关键点,并利用梯度方向直方图确定主方向,生成128维描述子。