NOI2014 魔法森林

这道题…正解是LCT(然而我不会),所以把我的动点SPFA发上来混一波23333,对于这个问题,应该是类似瓶颈生成树??对此,我们可以很好想出一个贪心+最短路策略,我们先把每一条边按照A的权值排序,然后枚举每一条边,跑一遍对于B的最短路,之后用新加入的边的A权值更新一下到终点的答案,然后….然后就完事了!一道考数据结构的题就这样水过23333 SPFA时间复杂度蜜汁不科学啊啊啊啊啊 代码如下

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
int n,m,top=0,maxa=0,ans=1e9;
int dis[100005],f[100005];
bool inq[100005];
struct edge{
    int x,y,a,b;
}p[200005];
inline bool cmp(edge x,edge y){
    if(x.a==y.a) return x.b<y.b;
    return x.a<y.a;
}
struct ddf{
    int nex,to,b;
}a[200005];
inline void add(int x,int y,int b){
    a[++top]=(ddf){f[x],y,b};
    f[x]=top;
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
        scanf("%d%d%d%d",&p[i].x,&p[i].y,&p[i].a,&p[i].b);
    sort(p+1,p+m+1,cmp);
    for(int i=2;i<=n;i++) dis[i]=1e9;
    for(int i=1;i<=m;i++){
        add(p[i].x,p[i].y,p[i].b);
        add(p[i].y,p[i].x,p[i].b);
        queue<int> q1;
        q1.push(p[i].x),q1.push(p[i].y);
        inq[p[i].x]=1,inq[p[i].y]=1;
        while(!q1.empty()){
            int u=q1.front();            
            for(int i=f[u];i;i=a[i].nex){
                int v=a[i].to;
                if(max(a[i].b,dis[u])<dis[v]){
                    dis[v]=max(a[i].b,dis[u]);
                    if(!inq[v]) inq[v]=1,q1.push(v);
                }
            }
            q1.pop();
            inq[u]=0;
        }
        if(p[i].a+dis[n]<ans) ans=p[i].a+dis[n];
    }
    if(ans==1e9) printf("-1");
    else printf("%d",ans);
    return 0;
}
P2375 [NOI2014] 动物园是一道经典的动态规划题目,以下是该题的详细题意和解题思路。 【题意描述】 有两个长度为 $n$ 的整数序列 $a$ 和 $b$,你需要从这两个序列中各选出一些数,使得这些数构成一个新的序列 $c$。其中,$c$ 序列中的元素必须在原序列中严格递增。每个元素都有一个价值,你的任务是选出的元素的总价值最大。 【解题思路】 这是一道经典的动态规划题目,可以采用记忆化搜索的方法解决,也可以采用递推的方法解决。 记忆化搜索的代码如下: ```c++ #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int MAXN = 1005; int dp[MAXN][MAXN], a[MAXN], b[MAXN], n; int dfs(int x, int y) { if (dp[x][y] != -1) return dp[x][y]; if (x == n || y == n) return 0; int res = max(dfs(x + 1, y), dfs(x + 1, y + 1)); if (a[x] > b[y]) { res = max(res, dfs(x, y + 1) + b[y]); } return dp[x][y] = res; } int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); for (int i = 0; i < n; i++) scanf("%d", &b[i]); memset(dp, -1, sizeof(dp)); printf("%d\n", dfs(0, 0)); return 0; } ``` 其中,dp[i][j]表示选到a数组中第i个元素和b数组中第j个元素时的最大价值,-1表示未计算过。dfs(x,y)表示选到a数组中第x个元素和b数组中第y个元素时的最大价值,如果dp[x][y]已经计算过,则直接返回dp[x][y]的值。如果x==n或者y==n,表示已经遍历完一个数组,直接返回0。然后就是状态转移方程了,如果a[x] > b[y],则可以尝试选b[y],递归调用dfs(x, y+1)计算以后的最大价值。否则,只能继续遍历数组a,递归调用dfs(x+1, y)计算最大价值。最后,返回dp[0][0]的值即可。 递推的代码如下: ```c++ #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int MAXN = 1005; int dp[MAXN][MAXN], a[MAXN], b[MAXN], n; int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); for (int i = 0; i < n; i++) scanf("%d", &b[i]); for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { dp[i][j] = max(dp[i + 1][j], dp[i + 1][j + 1]); if (a[i] > b[j]) { dp[i][j] = max(dp[i][j], dp[i][j + 1] + b[j]); } } } printf("%d\n", dp[0][0]); return 0; } ``` 其中,dp[i][j]表示选到a数组中第i个元素和b数组中第j个元素时的最大价值。从后往前遍历数组a和数组b,依次计算dp[i][j]的值。状态转移方程和记忆化搜索的方法是一样的。 【参考链接】 P2375 [NOI2014] 动物园:https://www.luogu.com.cn/problem/P2375
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值