MapReduce实现wordcount

统计数据集中每个单词出现的总次数,为避免大小写问题出现的统计次数错误,将单词都做成小写,并用正则除去出现的标点。

map阶段

import sys
import re

p = re.compile(u'\w+')
#读取数据流信息
for line in sys.stdin:
    word_list = line.strip().split()
    for word in word_list:
        if len(word) < 2:
            continue
        w = p.findall(word)[0].lower()
        print '%s\t%d'%(w, 1)

reduce阶段

import sys

cur_word = None  #定义word的指针
sum_cnt = 0      #对word数量累加
#读取数据流信息
for line in sys.stdin:
    word,count = line.strip().split('\t')
    if cur_word == None:
        cur_word = word
    if cur_word != word:
        print '%s\t%d'%(cur_word, sum_cnt)
        cur_word = word
        sum_cnt = 0
    sum_cnt += int(count)
print '%s\t%d'%(cur_word, sum_cnt)

本地调试

cat text.txt |python map.py | sort -k1 | python red.py

提交集群运行

HADOOP_CMD = "/usr/local/src/hadoop-2.6.1/bin/hadoop"
STREAM_JAR_PATH = "/usr/local/src/hadoop-2.6.1/share/hadoop/tools/lib/hadoop-streaming-2.6.1.jar"

INPUT_FILE_PATH = "/test.txt"
OUTPUT_FILE_PATH = "/output_wordcount"

$HADOOP_CMD fs - rmr -skipTrash $OUTPUT_FILE_PATH
# Step 1.
$HADOOP_CMD jar $STREAM_JAR_PATH \
    -input $INPUT_FILE_PATH \
    -output $OUTPUT_FILE_PATH \
    -mapper "python map.py" \
    -reducer "python red.py"


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值