YOLOv8改进心得:如何在网络结构中添加注意力机制、C2f、卷积、Neck和检测头模块
引言
随着计算机视觉领域的不断进步,YOLO(You Only Look Once)系列在目标检测任务中得到了广泛的应用。从最初的YOLOv1到如今的YOLOv8,网络结构、检测精度和速度都得到了大幅度的提升。在这个过程中,YOLOv8的网络结构也愈发复杂。本文将深入探讨如何在YOLOv8中添加和改进不同的网络模块,包括注意力机制、C2f(CSP模块的改进版)、卷积模块、Neck和检测头,帮助大家优化和扩展YOLOv8模型。
如果你已经掌握了YOLOv8的基础内容,并且希望在此基础上进行深度优化,这篇博客将会为你提供丰富的代码示例和详细的注释,帮助你在项目中实现这些改进。
一、导入并修改新的模块
在改进YOLOv8的网络结构时,我们经常需要引入新的模块,如自定义的卷积、C2f块、或者注意力机制。这些模块可以增强网络对特征的提取能力和检测的准确度。为了保持代码结构的简洁和可维护性,建议将新模块独立存放在YOLOv8的源代码目录中,而不是直接修改现有的文件。这种做法不仅方便调试&