单变量线性回归

本文详细介绍了单变量线性回归,包括模型表示、代价函数的概念,以及如何通过梯度下降算法找到最佳模型参数。在模型表示中,以预测房价为例解释了线性函数的形式;代价函数是衡量模型预测误差的平方和,目标是最小化此误差;最后,介绍了批量梯度下降法用于求解最小化代价函数的参数更新规则。
摘要由CSDN通过智能技术生成

单变量线性回归(Linear Regression with One Variable)

1 模型表示

举个例子:这个例子是预测住房价格的。

我们要使用一个数据集,数据集包含某市的住房价格。在这里,根据不同房屋尺寸所售出的价格,数据集。

比方说,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,从这个数据模型上来看,也许你可以告诉你的朋友,他能以大约220000(美元)左右的价格卖掉这个房子。这就是监督学习算法的一个例子。
吴恩达老师的例子
它被称作监督学习是因为对于每个数据来说,我们给出了“正确的答案”,即告诉我们:根据我们的数据来说,房子实际的价格是多少,而且,更具体来说,这是一个回归问题。 回归一词指的是,我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格。

同时,还有另一种最常见的监督学习方式,叫做分类问题,当我们想要预测离散的输出值,例如,我们正在寻找癌症肿瘤,并想要确定肿瘤是良性的还是恶性的,这就是0/1离散输出的问题。更进一步来说,在监督学习中我们有一个数据集,这个数据集被称训练集。

以之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:
房屋案例
我们将要用来描述这个回归问题的标记如下:

m 代表训练集中实例的数量

x 代表特征/输入变量

y 代表目标变量/输出变量

(x,y) 代表训练集中的实例

(x(i),y(i)) 代表第 个观察实例

h 代表学习算法的解决方案或函数也称为假设(hypothesis)
在这里插入图片描述
这就是一个监督学习算法的工作方式,我们可以看到这里有我们的训练集里房屋价格 我们把它喂给我们的学习算法,学习算法的工作了,然后输出一个函数,通常表示 h 表示。代表hypothesis(假设),表示一个函数,输入是房屋尺寸大小,就像你朋友想出售的房屋,因此 h 根据输入的 x 值来得出 y 值, y 值对应房子的价格。因此,h 是一个从 x 到 y 的函数映射

选择最初的使用规则 h 代表hypothesis,因而,要解决房价预测问题,我们实际上是要将训练集“喂”给我们的学习算法,进而学习得到一个假设 h,然后将我们要预测的房屋的尺寸作为输入变量输入给 h,预测出该房屋的交易价格作为输出变量输出为结果。那么,对于我们的房价预测问题,我们该如何表达 h?

一种可能的表达方式为   h θ ( x ) = θ 0 + θ 1 x \ h_{\theta}(x)=\theta_{0}+\theta_{1} x  hθ(x)=θ0+θ1x,因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题。



2 代价函数

代价函数
在线性回归中我们有一个像这样的训练集,m 代表了训练样本的数量,比如 m = 47。而我们的假设函数,也就是用来进行预测的函数,是这样的线性函数形式   h θ ( x ) = θ 0 + θ 1 x \ h_{\theta}(x)=\theta_{0}+\theta_{1} x  h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值