Python 数据降噪处理的四种方法——均值滤波、小波变换、奇异值分解、改变binSize

Python 数据降噪处理的四种方法——均值滤波、小波变换、奇异值分解、改变binSize

github主页:https://github.com/Taot-chen

一、均值滤波

1)算法思想

 给定均值滤波窗口长度,对窗口内数据求均值,作为窗口中心点的数据的值,之后窗口向后滑动1,相邻窗口之间有重叠;边界值不做处理,即两端wid_length//2长度的数据使用原始数据。

2)Python实现
'''
均值滤波降噪:
    函数ava_filter用于单次计算给定窗口长度的均值滤波
    函数denoise用于指定次数调用ava_filter函数,进行降噪处理
'''


def ava_filter(x, filt_length):
    N = len(x)
    res = []
    for i in range(N):
        if i <= filt_length // 2 or i >= N - (filt_length // 2):
            temp = x[i]
        else:
            sum = 0
            for j in range(filt_length):
                sum += x[i - filt_length // 2 + j]
            temp = sum * 1.0 / filt_length
        res.append(temp)
    return res


def denoise(t, x, n, filt_length):
    for i in range(n):
        res = ava_filter(x, filt_length)
        x = res
    return (t, res)

二、奇异值分解

1)算法思想

 任意m ∗ n 的矩阵A可以分解为如下形式:

A=U·sigema·V(T)

其中U、V分别是左右奇异矩阵,sigema是对角矩阵,对角线上的元素是A的奇异值从大到小的排列。

 奇异值表示的是原矩阵在其对应特征向量分量上的权重,奇异值越大,对应的特征向量在原矩阵中的权重越大。

 如果前k(k<r,r是原矩阵的秩)个奇异值数值较大,说明前k个奇异值对应的信息是原矩阵的主成分。那么可以使前k个奇异值不变,其余奇异值设置成0,再重构原矩阵,实现降噪。

2)Python实现
import numpy as np
# import random
import matplotlib.pyplot as plt
import sys
import os


def denoise(t, x):
    # 1、数据预处理
    res = int(np.sqrt(len(x)))
    xr = x[:res * res]
    delay = t[:res * res]

    # 2、一维数组转换为二维矩阵
    x2list = []
    for i in range(res):
        x2list.append(xr[i * res:i * res <
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值