Python 数据降噪处理的四种方法——均值滤波、小波变换、奇异值分解、改变binSize
github主页:https://github.com/Taot-chen
一、均值滤波
1)算法思想
给定均值滤波窗口长度,对窗口内数据求均值,作为窗口中心点的数据的值,之后窗口向后滑动1,相邻窗口之间有重叠;边界值不做处理,即两端wid_length//2长度的数据使用原始数据。
2)Python实现
'''
均值滤波降噪:
函数ava_filter用于单次计算给定窗口长度的均值滤波
函数denoise用于指定次数调用ava_filter函数,进行降噪处理
'''
def ava_filter(x, filt_length):
N = len(x)
res = []
for i in range(N):
if i <= filt_length // 2 or i >= N - (filt_length // 2):
temp = x[i]
else:
sum = 0
for j in range(filt_length):
sum += x[i - filt_length // 2 + j]
temp = sum * 1.0 / filt_length
res.append(temp)
return res
def denoise(t, x, n, filt_length):
for i in range(n):
res = ava_filter(x, filt_length)
x = res
return (t, res)
二、奇异值分解
1)算法思想
任意m ∗ n 的矩阵A可以分解为如下形式:
A=U·sigema·V(T)
其中U、V分别是左右奇异矩阵,sigema是对角矩阵,对角线上的元素是A的奇异值从大到小的排列。
奇异值表示的是原矩阵在其对应特征向量分量上的权重,奇异值越大,对应的特征向量在原矩阵中的权重越大。
如果前k(k<r,r是原矩阵的秩)个奇异值数值较大,说明前k个奇异值对应的信息是原矩阵的主成分。那么可以使前k个奇异值不变,其余奇异值设置成0,再重构原矩阵,实现降噪。
2)Python实现
import numpy as np
# import random
import matplotlib.pyplot as plt
import sys
import os
def denoise(t, x):
# 1、数据预处理
res = int(np.sqrt(len(x)))
xr = x[:res * res]
delay = t[:res * res]
# 2、一维数组转换为二维矩阵
x2list = []
for i in range(res):
x2list.append(xr[i * res:i * res <