- 博客(21)
- 收藏
- 关注
原创 《YOLACT++:Better Real-time Instance Segmentation》阅读笔记
简介在YOLACT的基础上,通过将可变形卷积引入基干网络,通过使用更好的锚尺度和长宽比优化目标检测头,并加入一个新的快速掩模重评分分支,YOLACT++模型可以在33.5fps的MS-COCO上达到34.1mAP,在实时运行的情况下,与目前最先进的方法性能相当接近。一、引言为了进一步提高相对于YOLACT的性能,文章提出了YOLACT++:(1)将可变形卷积[1]、[2]合并到基干网络,提...
2020-03-06 21:43:41
1590
原创 Single-stage目标检测网络YOLO相关背景知识
YOLO相关背景知识[1]两大流派目前,基于深度学习算法的一系列目标检测算法大致分为两大流派:1.两步走(two-stage)算法:先产生候选区域然后再进行CNN分类(RCNN系列),2.一步走(one-stage)算法:直接对输入图像应用算法并输出类别和相应的定位(YOLO系列)之前的R-CNN系列虽然准确率比较高,但是即使是发展到Faster R-CNN,检测一张图片如下图所示也...
2020-03-01 16:17:33
1551
原创 《YOLACT:Real-time Instance Segmentation》论文阅读
一、简介文章提出了一个简单的全卷积事实实例分割模型,在一台泰坦Xp上以33.5fps的速度在MSCOCO上达到29.8map。使用了两个平行步骤:(1) 生成一组原型掩码和(2)预测每个实例的掩码系数。然后将原型与掩码系数线性组合生成实例掩码。文章发现,由于这一过程不依赖于重池化,因此产生了非常高质量且更具稳定性的掩码,此外,还提出了快速NMS。二、引言在过去的几年中,实例分割的进步,部分是...
2020-03-01 16:14:00
1018
原创 UPSNet: A Unified Panoptic Segmentation Network 论文阅读
UPSNet: A Unified Panoptic Segmentation Network 论文阅读简介一、 引言二、 相关工作三、UPSNet3.1UPSNet结构简介文章提出UPSNet,一个统一的全景分割网络。以ResNet做基干,首先设计了一个基于可变形卷积的语义分割头和一个MaskR-CNN风格的实例分割头,同时解决了这两个子任务。文章还提出了parameter-free全景分割...
2020-01-15 19:52:25
1310
原创 Panoptic Segmentation论文阅读
简介文章提出了一个新的概念-全景分割。传统任务中语义分割是对图像中的所有像素分类,实例分割是对图像中的实例级目标进行检测和分割,而全景分割是对这两个任务的统一。这种统一是自然而然的,但是也带来了算法挑战。文章还为全景分割的评估定制了标准Panoptic Quality(PQ),这个标准具备简单可解释性。使用PQ标准,文章还在目前存在全景分割标注的数据集上测试了人类的分割质量,有助于更好的理...
2019-11-14 10:41:13
396
原创 Mask Scoring R-CNN阅读笔记
Mask Scoring R-CNN阅读笔记简介对于一个深度神经网络来讲,如何评估该网络本身的预测质量是一个有趣并且有难度的任务。在实例分割中,实例分类的置信得分被用作掩膜质量评估。然而,使用实例掩膜和实例GT计算的IoU得分,往往与分类得分不相关联。(问题)该篇文章探索这个问题并且提出了包含有一个学习评估预测到的实例掩膜质量的网络块的Mask Scoring R-CNN。该网络块同时考虑了...
2019-09-16 21:27:27
814
原创 S4Net: Single Stage Salient-Instance Segmentation阅读笔记
S4Net: Single Stage Salient-Instance Segmentation阅读笔记简介文章关注显著实例分割。考虑到每个实例类的独立性,文章设计了一个单阶段显著实例分割网络,该网络不仅考虑了box框内的local context信息,同时考虑了其周围的context信息,使得该网络能够将相同范围内的即便有遮挡的实例从容分开。除此之外,文章网络的图片处理速度也很快,当输入图...
2019-07-12 22:25:28
2529
7
原创 Panoptic Feature Pyramid Networks阅读笔记
Panoptic Feature Pyramid Networks阅读笔记简介全景分割任务是将实例分割和语义分割统一起来的任务,然而目前的该任务通常使用独立并不同的网络来执行以上两个任务并且不能共享计算。该篇文章目的是将全景分割任务集成与一个单一网络,为Mask R-CNN网络增加语义分割分支,该语义分割分支与Mask R-CNN共享FPN基础结构。值得一提的是,该结构不仅保留了原先Mask...
2019-02-25 20:16:14
1334
原创 Sequential Grouping Networks for Instance Segmentation论文阅读
论文阅读: Sequential Grouping Networks for Instance Segmentation一、简介该文章提出了SGN以完成实例分割任务,为了从像素中逐步组成目标,SGN使用了一系列的神经网络,每个神经网络都用来解决一个增加语义复杂度的子类问题。文章通过实验证明SGN有效超越了目前在Cityscapes和PASCAL VOC数据集上表现最好的方法。二、背景实例分...
2019-02-16 22:16:30
1233
原创 Boundary-aware Instance Segmentation 阅读笔记
Boundary-aware Instance Segmentation-2017CVPR 阅读笔记简介文章方法基于物体掩模的距离变换。文章设计了一个具有残差反卷积结构的物体掩模网络(OMN),提取特征并将其解码成最终的二值物体掩模。优点:这种方法能摆脱传统区域提议中提议框的范围局限,并且对于不够准确的区域提议具有鲁棒性。文章将OMN整合到多任务网络级联框架中,称之为边界感知实例分割网络...
2019-02-16 22:13:06
2258
1
原创 Deep Watershed Transform for Instance Segmentation阅读笔记
Deep Watershed Transform for Instance Segmentation简介文章属于将原图和语义分割图作为输入的方法,使用语义分割图来筛选图像中相关前景区域。文章结合了传统的分水岭算法和深度学习算法,生成能量图,能量图中的每一个实例对应一个能量盆地,然后,文章再单个能级执行切割,以直接生成与实例对应的组件。文章方法有几个关键优势:它可以轻松地进行端到端的训练,并生...
2019-02-07 18:00:07
1075
原创 DenseASPP for Semantic Segmentation in Street Scenes阅读笔记
DenseASPP for Semantic Segmentation in Street Scenes摘要本文提出了一种用于自动驾驶场景的DenseASPP网络。自动驾驶场景中的各个物体由于与摄像头距离不同,在规模尺寸上会有很大的差异,如图1所示。因此,要使得多尺度的信息都被正确编码,这对场景中的高级特征表示方法提出了挑战。针对这个问题,首先有人提出了带孔卷积[1],它能在不损失空间...
2019-01-25 12:01:31
2466
4
原创 DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks阅读笔记
深度注意生成对抗网络的实例级图像翻译一、图像翻译通过从一个图像域到另一个图像域找到一些底层对应关系(例如,类似的语义)来学习映射函数,这就是图像翻译问题。翻译的原则是保留源域的预期身份(例如,文本到图像中的语义,面对动画中的人类ID),同时生成与目标域的分布匹配的样本。二、目前技术挑战多年的研究已经在有足够的配对的监督环境中产生了强大的翻译系统。然而,获得配对的训练数据是困难且昂贵的。因此...
2019-01-25 11:51:39
1338
原创 Instance Embedding Transfer to Unsupervised Video Object Segmentation阅读笔记
Instance Embedding Transfer to Unsupervised Video Object Segmentation论文简介我们提出了一种通过传输封装在基于图像的实例嵌入网络中的知识来进行无监督视频对象分割的方法。实例嵌入网络为每个像素生成嵌入向量,以便识别属于同一对象的所有像素。虽然在静态图像上进行了训练,但实例嵌入在连续的视频帧上是稳定的,这使我们可以随时间将对象链接...
2019-01-25 11:47:17
1279
原创 MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features阅读笔记
MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features论文研究:论文解决了实例分割的问题,即同时解决对象检测和语义分割的任务。论文提出了一个名为MaskLab的模型,它可以产生三个输出:box检测,语义分割和方向预测。建立在Faster-RCNN对象检测器之...
2019-01-25 11:39:02
1623
原创 Weakly Supervised Instance Segmentation using Class Peak Response阅读笔记
Weakly Supervised Instance Segmentation using Class Peak Response目前技术空缺目前大部分弱监督下的实例分割技术需要大范围像素级的标注去训练深度神经网络,然而这种方法往往耗费大量人力物力[1]。相比之下,普通的图像分类卷积神经网络的训练,只需要简单的图像级的类别标注,即图像中有没有要求范围内的物体类别,这种操作更为简单方便。然而目前...
2019-01-25 11:32:08
1348
原创 Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships
一、典型的目标检测问题对于小目标的敏感度不够高,检测精度也不够高,容易造成错误分类。如下图[2]是Faster R-CNN的检测表现:从图中可以看到,性能很好的Faster R-CNN网络对于一些小目标也会出现敏感度不高、检测精度不高或者错误检测的问题。二、论文思路鉴于上面出现的问题,论文考虑加入目标的上下文语义信息,以及目标和目标之间的逻辑关系信息。论文认为对象检测不仅仅针对单一对象的...
2019-01-25 11:26:07
424
转载 目标检测算法——单次目标检测器
基于区域的检测器Faster R-CNN 中,在分类器之后有一个专用的候选区域网络。它的检测精度很高,但是处理速度却不够。考虑通过减少每个ROI的工作量来解决这个问题,于是寻求在一个步骤内得到边界框和类别的方法,这就是单次目标检测器和基于区域的检测器的根本区别。基于滑动窗口进行预测这个概念和 Faster R-CNN 中的锚点类似。区别在于Faster R-CNN中是分两支路来分别预测类别...
2019-01-25 11:21:35
2929
翻译 目标检测算法——基于候选区域的目标检测器
滑动窗口检测器一种用于目标检测的暴力方法,是从左到右、从上到下滑动窗口,利用分类识别目标。使用不同大小和宽高比的窗口。选择性搜索为了提升性能,尽量减少窗口数量,于是使用候选区域方法,创建目标检测的感兴趣区域(ROI),使用选择性搜索(SS)。R-CNN利用候选区域方法创建了约2000个ROI。区域被处理成固定大小的图像送入卷积神经网络。最后几层全连接层实现提炼分类和边框修正。通过...
2019-01-25 11:16:58
5515
原创 Path Aggregation Network for Instance Segmentation阅读笔记
1.实例分割思想:机器自动从图像中用目标检测方法框出不同实例,再用语义分割方法在不同实例区域内进行逐像素标记,区分不同物体和背景。2.目前情况文章研究者指出当前最优的 Mask R-CNN 中的信息传播还可以进一步优化。具体来说,低层级的特征对于大型实例识别很有用。但最高层级特征和较低层级特征之间的路径很长,增加了访问准确定位信息的难度。每个候选区域都是源于一个特征层次上的特征网络池化的,其...
2019-01-25 11:07:21
472
原创 Affinity Derivation and Graph Merge for Instance Segmentation阅读笔记
Affinity Derivation and Graph Merge for Instance Segmentation用于实例分割的亲和派生和图合并方法一、简介二、相关工作2.1语义分割2.2实例分割功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如...
2019-01-25 10:55:57
1397
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人