LIME与模型可解释性研究 (先写一点,有空继续更)

LIME的基本思想是,对于测试集中的样本进行分析,看模型(不论是机器学习还是深度学习)用了哪些特征来输出某个结果。

分析样本时,对样本进行一定程度的扰动(例如遮盖图像的超像素或者删除文章中的一些单词),使得这些经过扰动获得的点位于原样本点附近(这里的距离可以用余弦相似度或者L2距离来衡量),观察这些扰动的点的输出是什么样的,与原来的样本之间有什么变化。我们理想中的explainer会在这些扰动点附近完成很好的拟合,但不需要在所有样本点附近都完成很好的拟合。

同时,LIME要用到某个模型,这里叫做explainer,用到分类器种学到的特征,然后expaliner是个简单的模型,例如线性回归或者决策树,要满足explainer输出的结果尽可能接近分类器的输出结果。

其实我们可以看出,分类器中真正起作用的部分是他的特征抽取器,一个解释度高的模型,发挥主要作用的特征会尽可能的少。这也契合了omission方法中的研究:一个模型可解释程度越高,就会删除尽可能少的单词到达switching point.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值