可解释性lime

文章介绍了LIME算法,一种用于解释任意分类器或回归器预测的局部近似方法。通过呈现对预测有贡献或负面影响的特征权重,帮助用户理解模型决策。此外,提出了SP-LIME,用于通过选择一组代表性实例和解释来评估模型的全局可靠性。通过模拟实验,展示了LIME在情绪分析任务中的高忠实性。
摘要由CSDN通过智能技术生成

区分信任的两个不同的(但相关的)定义很重要:
(1)信任预测,即用户是否充分信任单个预测,以便基于该预测采取一些行动;
(2)信任模型,即用户是否信任模型在部署时以合理的方式运行。

这篇文章提出为单个预测提供解释作为“信任预测”问题的解决方案,并选择多个这样的预测(和解释)作为“信任模型”问题的解决方案。我们的主要贡献总结如下。

•LIME,一种算法,通过使用可解释的模型对其进行局部近似,以忠实的方式解释任何分类器或回归器的预测。

•SP-LIME,一种通过子模块优化选择一组具有代表性的实例和解释来解决“信任模型”问题的方法。

通过“解释预测”,我们指的是呈现文本或视觉伪影,这些伪影能够定性地理解实例组件(例如文本中的单词、图像中的补丁)与模型预测之间的关系。

图1说明了解释单个预测的过程。很明显,如果能提供清晰的解释,医生在模型的帮助下更容易做出决定。在这种情况下,解释是一个带有相对权重的症状列表-这些症状要么对预测有贡献(绿色),要么是对预测不利的证据(红色)。
在这里插入图片描述
图1:解释个别预测。一个模型预测一个病人患有流感,lime强调病人病史中的哪些症状导致了这种预测。打喷嚏和头痛被认为是导致“流感”预测的因素,而“没有疲劳”则是反对的证据。有了这些,医生就可以对模型的预测做出明智的决定。(绿色的特征促进预测流感,红色的特征阻碍预测流感)

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值