数位dp一般是给你个范围,让你求在这个范围内的数字是否满足一个特定的条件,因为情况太多,遍历一定会超时,所以要用到记忆话搜索,那么它和dp有什么关系呢?emmmm,可能所有的记忆化过程都可以和dp搭上关系吧。这种题的关键在于怎么建立dp公式来存储一个状态,其他部分是比较固定的。当然这种问题和数学方面结合比较多。下面举个简单例子。
HDU 2089
杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer)。
杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有4或62的号码。例如:
62315 73418 88914
都属于不吉利号码。但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际上给多少辆新的士车上牌照了。
Input输入的都是整数对n、m(0<n≤m<1000000),如果遇到都是0的整数对,则输入结束。
Output对于每个整数对,输出一个不含有不吉利数字的统计个数,该数值占一行位置。
Sample Input
1 100
0 0
Sample Output
80
题意很明确了,下面上代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int dp[25][2];
int a[25];
int dfs(int pos, int sta, int pre, int lim)
{
int ans = 0;
if(pos == -1)
return 1;
if(dp[pos][sta] != -1 && !lim)
return dp[pos][sta];
int top = lim ? a[pos] : 9;
for(int i = 0; i <= top; i++)
{
if(i == 4)
continue;
if(pre == 6 && i == 2)
continue;
ans += dfs(pos - 1, i == 6 ? 1 : 0, i, lim && i == a[pos]);
}
if(!lim) dp[pos][sta] = ans;
return ans;
}
int main()
{
int n, m;
while(cin >> n >> m && (n || m))
{
memset(dp, -1, sizeof(dp));
int i = 0;
while(m)
{
a[i++] = m % 10;
m /= 10;
}
int ans1 = dfs(i - 1, 0, 0, 1);
i = 0;
n = n - 1;
while(n)
{
a[i++] = n % 10;
n /= 10;
}
int ans2 = dfs(i - 1, 0, 0, 1);
cout << ans1 - ans2 << endl;
}
return 0;
}