西瓜书-决策树

伪代码
决策树生成伪代码

决策树生成过程

决策树生成过程就是生成一颗最优的决策树,一般从根节点开始生成,一步一步往下蔓延(递归的过程)。那么选择哪个属性作为根节点呢?这就需要一个判定标准了,说白了就是穷举(无非就是那么几个属性)。
既然是决策点(一般称分支结点),随着划分的不断进行, 我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即纯度越来越高。

信息熵 information entropy

度量样本集合纯度最常用的一种指标,该值越小则说明样本集合纯度越高,样本集合D的信息熵定义为:
在这里插入图片描述

信息增益 information gain

为了选定哪个属性作为划分结点,可计算各属性值对当前样本集合(划分的进行集合越来越小)进行划分所获得的信息增益
信息增益
一般而言,信息增益越大,则意味着使用该属性来进行划分所获得的纯度提升越大,因此我们可以用信息增益来进行决策树的划分属性选择,即优先选择信息增益最大的属性作为新的划分结点。

缺点:信息增益准则对可取值数目较多的属性有所偏好

增益率 gain ratio

为了避免 信息增益准则偏好于取值数目较多的属性所带来的不利影响, 可使用增益率来选择最优划分属性,定义如下
增益率

注意

需注意的是,增益率准则对可取值数目较少的属性有所偏好,因此使用时并不是直接选择最大增益率最大的属性,而是:
现从候选划分属性中筛选出信息增益高于平均水平的属性,再从其中选择增益率最高的。

基尼指数

也是一种选择最优划分结点的评价指标,不想写了。。。

剪枝处理 -防止决策树过拟合

预剪枝 生成过程中决策是否剪枝

即划分过程中根据以上信息增益、增益率等准则选择划好了属性划分结点时,还有评估是否要接着划分,即加入该划分结点与否对分类精度的影响(验证集上测试)。(划分后的结果选择样本数目最多的类别)
根据精度来进行决策是否加入该划分结点。
缺点:存在欠拟合风险

后剪枝 生成决策树后从下至上、从左至右对划分点进行剪枝

也是同样的道理,根据剪枝前后的决策精度来判断是否需要剪掉该决策点
缺点:后剪枝是在生成决策树后进行的,并且需要自底向上地对树中所有非叶结点进行逐一考察,训练时间开销大

总结 后剪枝决策树欠拟合风险小,具有更好的泛化性能,但其训练时间开销要大得多。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值