RCAN/RCAB:Image Super-Resolution Using Very Deep Residual Channel Attention Networks

本文介绍了RCAN(Residual Channel Attention Network),一种用于图像超分辨率的深度学习模型。RCAN利用残差组(RG)和通道注意力(CA)模块,通过残差套娃结构适应更深层的网络,提升高频信息恢复。通道注意力机制根据通道信息的重要性调整特征权重,以增强网络的表现。此外,文章还提到了构成RCAB的基本单元及其作用。
摘要由CSDN通过智能技术生成

前言

这是使用在超分辨率 领域的一个论文,主要卖点是提出的名叫RCAB的注意力模块。

Motivation

低分辨率图像(DR)中包含大量低频信息,但是在一般的卷积神经网络中每个通道中的特征会被同等对待,缺乏跨特征通道的区分学习能力,阻碍了深层网络的表征能力,不符合超分辨率任务中尽可能多地恢复高频信息的需求。

Methods

RCAN

本文提出了residual channel attention network(RCAN),残差通道注意力网络,来自适应地学习较深的网络中不同通道中的特征。
提出residual in residual(RIR)机制,即残差中的残差,目的是使网络能够适应更深层的结构。
如图所示,一个个深蓝色的残差组RG通过LSC长跳接连接,然后再接上最开始的只经过一次卷积得到的特征图,换句话说,大残差中包含了小残差。同时小残差中又有小小残差结构,即浅蓝色模块,浅蓝色模块又通过短跳接SSC进行连接,而且小小残差中是基于注意力的残差模块。最后经过所有的残差后的特征图做一个upsample使得低分辨率变成高分辨率(HR)
结构是比较清晰明了的,感觉这种思维也是很容易套用在其他领域上,即把残差套娃再套娃。

整体上,具体做法是:输入一张低分辨率图片,经过一个3x3的卷积得到一个特征图,再经过一个RIR模块,其中包含10个RG与一个3x3卷积和一个LSC。最后经过上采样与一个3x3卷积层,上采样使用ESPCNN,约束使用L1loss。最终得到分辨率放大的输出。
小模块可以在下面进行介绍。
在这里插入图片描述
这种残差套娃的合理性来源,在文中是引用论文:Enhanced deep residual networks
for single image super-resolution. In: CVPR W (2017)


通道注意力CA在这里插入图片描述

因为低频信息中包含了丰富的信息,高频信息中则是包含了边缘、纹理以及其他细节的信息,把这些特征都统一对待是不太好的,使用了注意力机制的方法,能够提升网络对这些特征的信息表征能力。
具体操作是先进行一个全局平均池化得到1x1xC,这是一个包含了粗略信息的通道描述符,再在channel上除以比例r,即downsample,之后再upsample得到每一个通道的权重系数。最后和残差过来的原来特征进行相乘,得到重新分配过通道权重的新特征。
作者选择C=64,r=16。


RCAB

F ( g , b ) F_(g,b) F(g,b)是输入,先经过一个conv+relu+conv的模块,得到 X ( g , b ) X_(g,b) X(g,b),然后将此特征图输入到CA中,经过一个sigmoid后再与原来特征图相乘,最终加上最开始的输入,得到输出。
其中卷积操作使用3x3的卷积核。
在这里插入图片描述

RG

residual group(RG)由B个RCAB、一个卷积和一个SSC组成,文中B为20。

代码

代码是从GitHub中直接复制出来的,是完整的一个RCAN的结构代码:

from model import common

import torch.nn as nn

def make_model(args, parent=False):
    return RCAN(args)

## Channel Attention (CA) Layer
class CALayer(nn.Module):
    def __init__(self<
  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值