可称1~40磅的4块砝码

法国数学家梅齐亚克在他著名的《数字组合游戏》(1962)中提出了一个问题:一位商人有一个重40磅的砝码,一天不小心将砝码摔成了四块。后来商人称得每块的重量都是整磅数,而且发现这四块碎片可以在天平上称1至40磅之间的任意重量。请问这四块碎片各重多少?


*问题分析与算法设计
本题是上一题的发展。题目中给出的条件是“在天平上”,这意味着:同一砝码既可以放在天平的左侧,也可以放在天平的右侧。若规定重物只能放在天平的左侧,则当天平平衡时有:
重物重量+左侧砝码重量总和=右侧砝码重量总和
由此可得:
重物重量=右侧砝码重量总和-左侧砝码重量总和
编程时只要根据以上公式,使“右侧砝码重量总和-左侧砝码重量总和”可以表示1到40之间的全部重量即可。编程中要注意的是:怎样采用一种简单的方法来表示一个砝码是在天平的左侧还是在天平的右侧,或是根本没有使用。
以下程序采用1、 -1和0分别表示上述三种情况,请注意理解。
#include <stdio.h>
#include <math.h>

int main()
{
    int weight1, weight2, weight3, weight4, d1, d2, d3, d4, x, flag; 
    
    printf("The weight is broke up as following 4 pieces:");
    for (weight1 = 1; weight1 <= 40; weight1++) 
      for (weight2 = weight1 + 1; weight2 <= 40 - weight1; weight2++)
        for (weight3 = weight2 + 1; weight3 <= 40 - weight1 - weight2; weight3++)
        if ((weight4 = 40 - weight1 - weight2 - weight3) >= weight3)
        {
            for (flag = 1, x = 1; x < 41 && flag; x++)
              for (flag = 0, d1 = 1; d1 > -2;d1--) 
                for (d2 = 1; d2 > -2 && !flag; d2--)
                  for (d3 = 1; d3 > -2 && !flag; d3--) 
                    for (d4 = 1; d4 > -2 && !flag; d4--) 
                        if(x == weight1*d1 + weight2*d2 + weight3*d3 + weight4*d4)
                        {
                            flag = 1;
                        }
            if(flag) 
            {    
                printf("%d %d %d %d\n", weight1, weight2, weight3, weight4);
            }
        }

    return 0;
}

The weight is broke up as following 4 pieces: 1 3 9 27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值