系列文章目录
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
提示:这里可以添加本文要记录的大概内容:
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
提示:以下是本篇文章正文内容,下面案例可供参考
一、統計 / 計量經濟需要的線性代數
1.
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
二、使用步骤
1. Some notes of Matrix Operations
inner product:The inner product of two
d
d
d-dimensional vectors
y
\bold y
y and
z
\bold z
z is the scalar
y
z
=
∑
i
=
1
d
y
i
z
i
\bold y\bold z=\sum_{i=1}^dy_iz_i
yz=i=1∑dyizi
If
y
\bold y
y is
m
m
m-dimensional and
z
\bold z
z is
n
n
n-dimensional, their outer product is the matrix
y
z
T
\bold y\bold z^T
yzT whose
(
i
,
j
)
t
h
(i,j)^{th}
(i,j)th element is
y
i
z
j
y_iz_j
yizj.
standard Euclidean norm:
z
z
T
=
∑
i
=
1
d
z
i
2
\bold z\bold z^T=\sum_{i=1}^dz_i^2
zzT=∑i=1dzi2 is non-negative and induces the standard Euclidean norm of
z
\bold z
z as
∣
∣
z
∣
∣
=
(
z
z
T
)
1
/
2
||\bold z||=(\bold z\bold z^T)^{1/2}
∣∣z∣∣=(zzT)1/2——served as the distance measurement. The vector with Euclidean norm zero must be a zero vector; the vector with Euclidean norm one is referred to as a unit vector
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
2.Variance-Covariance Matrix
standard Euclidean norm:
X
X
X is a random vector:
X
=
[
x
1
x
2
⋮
x
n
]
E
(
x
)
=
[
E
(
x
1
)
E
(
x
2
)
⋮
E
(
x
n
)
]
X= \begin{bmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{bmatrix} E(x) = \begin{bmatrix} E(x_1)\\ E(x_2 )\\ \vdots \\ E(x_n) \end{bmatrix}
X=⎣⎢⎢⎢⎡x1x2⋮xn⎦⎥⎥⎥⎤E(x)=⎣⎢⎢⎢⎡E(x1)E(x2)⋮E(xn)⎦⎥⎥⎥⎤
The variance-covariance matrix of
X
X
X are given by
data = pd.read_csv(
'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。