2020-10-11

系列文章目录

提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

提示:这里可以添加本文要记录的大概内容:
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


提示:以下是本篇文章正文内容,下面案例可供参考

一、統計 / 計量經濟需要的線性代數

1.

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、使用步骤

1. Some notes of Matrix Operations

inner productThe inner product of two d d d-dimensional vectors y \bold y y and z \bold z z is the scalar y z = ∑ i = 1 d y i z i \bold y\bold z=\sum_{i=1}^dy_iz_i yz=i=1dyizi
If y \bold y y is m m m-dimensional and z \bold z z is n n n-dimensional, their outer product is the matrix y z T \bold y\bold z^T yzT whose ( i , j ) t h (i,j)^{th} (i,j)th element is y i z j y_iz_j yizj.
standard Euclidean norm z z T = ∑ i = 1 d z i 2 \bold z\bold z^T=\sum_{i=1}^dz_i^2 zzT=i=1dzi2 is non-negative and induces the standard Euclidean norm of z \bold z z as ∣ ∣ z ∣ ∣ = ( z z T ) 1 / 2 ||\bold z||=(\bold z\bold z^T)^{1/2} z=(zzT)1/2——served as the distance measurement. The vector with Euclidean norm zero must be a zero vector; the vector with Euclidean norm one is referred to as a unit vector

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.Variance-Covariance Matrix

standard Euclidean norm
X X X is a random vector:
X = [ x 1 x 2 ⋮ x n ] E ( x ) = [ E ( x 1 ) E ( x 2 ) ⋮ E ( x n ) ] X= \begin{bmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{bmatrix} E(x) = \begin{bmatrix} E(x_1)\\ E(x_2 )\\ \vdots \\ E(x_n) \end{bmatrix} X=x1x2xnE(x)=E(x1)E(x2)E(xn)
The variance-covariance matrix of X X X are given by

data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

该处使用的url网络请求的数据。


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值