MIT_单变量微积分_27

1.分部积分

推导: ( u v ) ′ = u ′ v + u v ′ ( 乘 法 法 则 ) ⇒ u v ′ = ( u v ) ′ − u ′ v ∫ u v ′ = u v − ∫ u ′ v d x , ∫ a b u v ′ d x = u v ∣ a b − ∫ a b u ′ v d x (uv)'=u'v+uv'(乘法法则 )\Rightarrow uv'=(uv)'-u'v\\ \int uv'= uv-\int u'vdx,\int_a^buv'dx=uv|_a^b-\int_a^bu'vdx (uv)=uv+uv()uv=(uv)uvuv=uvuvdx,abuvdx=uvababuvdx
Ex1: ∫ l n x d x = l n x ⋅ x − ∫ 1 x ⋅ x d x = x l n x − x + C u = l n x , u ′ = 1 x ; v = x , v ′ = 1 \int lnxdx=lnx \cdot x-\int \frac{1}{x} \cdot xdx=xlnx-x+C\\ u=lnx,u'=\frac{1}{x};v=x,v'=1 lnxdx=lnxxx1xdx=xlnxx+Cu=lnx,u=x1;v=x,v=1
Ex2: ∫ ( l n x ) 2 d x , u = ( l n x ) 2 , u ′ = 2 ⋅ l n x ⋅ 1 x v = x , v ′ = 1 原 式 = ( l n x ) 2 ⋅ x − ∫ 2 ⋅ l n x ⋅ 1 x ⋅ x d x = ( l n x ) 2 ⋅ x − ∫ 2 ⋅ l n x d x ( 由 E 1 可 知 ) = ( l n x ) 2 x − 2 ( x l n x − x ) + C \int(lnx)^2dx,u=(lnx)^2,u'=2\cdot lnx\cdot\frac{1}{x}\\ v=x,v'=1\\ 原式=(lnx)^2\cdot x-\int2\cdot lnx\cdot \frac{1}{x} \cdot xdx\\ =(lnx)^2\cdot x-\int2 \cdot lnxdx(由E1可知)\\ =(lnx)^2x-2(xlnx-x)+C (lnx)2dx,u=(lnx)2,u=2lnxx1v=x,v=1=(lnx)2x2lnxx1xdx=(lnx)2x2lnxdx(E1)=(lnx)2x2(xlnxx)+C
Ex3: ∫ ( l n x ) n d x = ( l n x ) n ⋅ x − ∫ n ⋅ ( l n x ) n − 1 ⋅ 1 x ⋅ x d x u = ( l n x ) n , u ′ = n ( l n x ) n − 1 ⋅ 1 x ; v = x , v ′ = 1 原 式 = ( l n x ) n ⋅ x − ∫ n ⋅ ( l n x ) n − 1 d x \int(lnx)^ndx=(lnx)^n\cdot x-\int n \cdot (lnx)^{n-1} \cdot \frac{1}{x} \cdot xdx\\ u=(lnx)^n,u'=n(lnx)^{n-1}\cdot \frac{1}{x};v=x,v'=1\\ 原式=(lnx)^n \cdot x-\int n \cdot(lnx)^{n-1}dx (lnx)ndx=(lnx)nxn(lnx)n1x1xdxu=(lnx)n,u=n(lnx)n1x1;v=x,v=1=(lnx)nxn(lnx)n1dx
从上式可以总结一个结论: F n ( x ) = ∫ ( l n x ) n d x , F n ( x ) = x ( l n x ) n − n F n − 1 ( x ) F_n(x)=\int(lnx)^ndx,F_n(x)=x(lnx)^n-nF_{n-1}(x) Fn(x)=(lnx)ndx,Fn(x)=x(lnx)nnFn1(x)
将上式进行倒推: F 0 ( x ) = ∫ ( l n x ) 0 d x = x ; F 1 ( x ) = x l n x − F 0 ( x ) = x l n x − x + C F 2 ( x ) = x ( l n x ) 2 − 2 F 1 ( x ) = x ( l n x ) 2 − 2 ( x l n x − x ) + C F_0(x)=\int (lnx)^0 dx=x;F_1(x)=xlnx-F_0(x)=xlnx-x+C\\ F_2(x)=x(lnx)^2-2F_1(x)=x(lnx)^2-2(xlnx-x)+C F0(x)=(lnx)0dx=x;F1(x)=xlnxF0(x)=xlnxx+CF2(x)=x(lnx)22F1(x)=x(lnx)22(xlnxx)+C
Ex ∫ x n e x d x , 令 u = x n , u ′ = n x n − 1 , v = e x , v ′ = e x 原 式 = x n e x − ∫ n x n − 1 e x d x G n ( x ) = ∫ x n e x d x , G n ( x ) = x n ⋅ e x − n G n − 1 ( x ) \int x^n e^xdx,令u=x^n,u'=nx^{n-1},v=e^x,v'=e^x\\ 原式=x^ne^x-\int nx^{n-1}e^xdx\\ G_n(x)=\int x^ne^xdx,G_n(x)=x^n \cdot e^x-nG_{n-1}(x) xnexdx,u=xn,u=nxn1,v=ex,v=ex=xnexnxn1exdxGn(x)=xnexdx,Gn(x)=xnexnGn1(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值