1.壳层法、圆盘法求体积
Ex
利用切片球体积。
V = ∫ A ( x ) d x V=\int A(x)dx V=∫A(x)dx
Ex:
旋转立方体,绕x轴旋转(圆盘法)。
d v = π y 2 d x dv=\pi y^2dx dv=πy2dx
Ex:
半径为 a a a球的体积。
圆 盘 法 : d y = π y 2 d x 圆 : ( x − a ) 2 + y 2 = a 2 y 2 = a 2 − ( x − a ) 2 = 2 a x − x 2 V = ∫ 0 2 a π ( 2 a x − x 2 ) d x = π ( a x 2 − x 3 3 ) ∣ 0 2 a = π ( 4 a 3 − 8 a 3 3 ) = 4 3 π a 3 圆盘法:dy=\pi y^2dx\\ 圆:(x-a)^2+y^2=a^2\\ y^2=a^2-(x-a)^2\\ =2ax-x^2\\ V=\int_0^{2a}\pi(2ax-x^2)dx\\ =\pi(ax^2-\frac{x^3}{3})|_0^{2a}\\ =\pi(4a^3-\frac{8a^3}{3})\\ =\frac{4}{3}\pi a^3 圆盘法:dy=πy