《西瓜书》大白话思想-第五章

5神经网络

5.1

我们说的神经网络是指神经网络学习,这是机器学习和神经网络学科的交叉。神经网络是由众多的神经元组成,那神经元和神经元之间要怎么交互?当一个神经元兴奋了,或者说被什么激活了,或者说达到某个值了,那么它就会自然而然的向那个与其连接的神经元进行交互。我个人理解是,因为某个方面产生了差值,这种情形也叫MP神经元模型。我们要知道,一个神经元可能有N个神经元与其连接,而每一个传递过来的信息对我们这个神经元而言又不是啥都重要,这肯定得有个权重。当这些权重的总和大过我这个神经元的激活阈值了。哎嘿,这时候,你们就成功把我激活了。不然的话,就算你们左一个右一个的来骚扰我一下,我也不一定就能被你们激活。当我被激活后,我就可以通过激活函数产生一个新的输出。那这个激活函数到底是啥样子呢?书中给了两种,但是我还是不明白,为啥是这两种?

5.2+5.3

一个神经元作为输入,并把信息传递给另一个神经元,然后第二个神经元被激活了,并向外输出信息,这一系列被称为感知机。这第二个神经元也是MP神经元,或者叫阈值逻辑单元。但是,阈值逻辑单元的阈值咋得到呢?学习得到,也就是不断地试验,预测它。

!!!!

涉及到的线性超平面问题,俺不会呀,,要补一下

卷积神经网络(CNN)是一种常用于图像处理和模式识别的深度学习模型。它的设计灵感来自于生物学中视觉皮层的神经元结构。为了用通俗的语言解释CNN,我们可以用以下方式来理解它: 假设你要识别一张猫的图片。首先,你的大脑会将这张图片的像素点转化成一系列数字,并且记录下它们的位置和颜色。然后,大脑会将这些数字输入到“卷积层”中。 在卷积层中,会有很多个“过滤器”。这些过滤器可以视为一双眼睛,它们通过抓取图片的不同特征来帮助你识别物体。每个过滤器都在图片上滑动并计算一个“特征图”,这个特征图描述了所检测到的特定特征。例如,一个过滤器可以检测到猫的边缘,另一个可以检测到猫的颜色等等。当所有过滤器完成计算后,就会得到一些不同的特征图。 在“池化层”中,每个特征图都会被压缩,去除一些不重要的信息。这样可以减少需要计算的数据量,并且使得特征更加鲁棒和不变形。 最后,在全连接层中,所有的特征图都被连接起来,形成一个巨大的向量。接下来,这个向量会通过一些神经元节点,最终输出识别结果,也就是“这是一张猫的图片”。 CNN的一个重要特点是参数共享,这意味着每个过滤器会在整个图片上进行计算,而不仅仅是某个局部区域。这样可以减少需要计算的参数量,提高训练速度和模型的泛化能力。 总结一下,CNN通过卷积层来提取图像的特征,并通过池化层降低特征的维度。最后,通过全连接层将所有特征连接起来并输出结果。这种结构使得CNN非常适合于图像分类和识别任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值