《西瓜书》大白话思想-第六章

6支持向量机

现在有一堆样本,我们想对其分类,怎么分才是最好的呢?我们设想,有个完美的超平面,从中将这些样本正好分成了两类。怎么个完美法?这个超平面使得样本的动荡最小,并且分类的结果鲁棒性能好,这就是划分最好的超平面。既然是一个超平面,那肯定有法向量和位移。空间中有一部分点到超平面距离是法向量模的正反倍数的话,这些点就是支持向量。两个类别支持向量之间的距离叫间隔。想要间隔最大化,也就是需要模最小化。这个时候,这个优化模型叫作支持向量机的基本型。求解该模型,可以用对偶问题。但是当我们想找一个超平面干掉分类问题,现实中这样的超平面不一定会存在。因此,我们需要往高维去拓展。拓展的时候,遇到了高维障碍,直接求不好求。人们借助了一个函数来求解。这个函数也被称作了核函数,核函数的展开式也叫支持向量展式。所以我们发现,这个关键是就是怎么去定义这个核函数?这也是支持向量机的最大变数。即便找到了一个核函数使训练样本在特征空间中线性可分,但是我们也不知道这个会不会过拟合。以前划分间隔的都是必须得满足一定的要求,也称作硬间隔,现在如果运行某些样本不满足这样的样本,则可称作软间隔。然而,这样不满足约束的样本应该经可能的少,怎么衡量呢?引入了损失函数。now,我们又该认识损失函数了?这怎么定义?有什么性质?接着,我们引入了损失函数后,我们得定量的判断到底损失了多少呀,这需要预测,因此涉及到了回归。

卷积神经网络(CNN)是一种常用于图像处理和模式识别的深度学习模型。它的设计灵感来自于生物学中视觉皮层的神经元结构。为了用通俗的语言解释CNN,我们可以用以下方式来理解它: 假设你要识别一张猫的图片。首先,你的大脑会将这张图片的像素点转化成一系列数字,并且记录下它们的位置和颜色。然后,大脑会将这些数字输入到“卷积层”中。 在卷积层中,会有很多个“过滤器”。这些过滤器可以视为一双眼睛,它们通过抓取图片的不同特征来帮助你识别物体。每个过滤器都在图片上滑动并计算一个“特征图”,这个特征图描述了所检测到的特定特征。例如,一个过滤器可以检测到猫的边缘,另一个可以检测到猫的颜色等等。当所有过滤器完成计算后,就会得到一些不同的特征图。 在“池化层”中,每个特征图都会被压缩,去除一些不重要的信息。这样可以减少需要计算的数据量,并且使得特征更加鲁棒和不变形。 最后,在全连接层中,所有的特征图都被连接起来,形成一个巨大的向量。接下来,这个向量会通过一些神经元节点,最终输出识别结果,也就是“这是一张猫的图片”。 CNN的一个重要特点是参数共享,这意味着每个过滤器会在整个图片上进行计算,而不仅仅是某个局部区域。这样可以减少需要计算的参数量,提高训练速度和模型的泛化能力。 总结一下,CNN通过卷积层来提取图像的特征,并通过池化层降低特征的维度。最后,通过全连接层将所有特征连接起来并输出结果。这种结构使得CNN非常适合于图像分类和识别任务。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值