矩阵向量化

向量化算子 V e c \mathbf{Vec} Vec

 设 A = [ a i j ] m × n \mathbf{A=[a_{ij}]_{m\times n}} A=[aij]m×n,则有 V e c ( A ) = ( a 11 a 21 ⋯ a m 1 ; a 12 a 22 ⋯ a m 2 ; ⋯   ; a 1 n a 2 n ⋯ a m n ) ⊤ \mathbf{Vec(A)=(a_{11}a_{21}\cdots a_{m1};a_{12}a_{22}\cdots a_{m2};\cdots;a_{1n}a_{2n}\cdots a_{mn})}^{\top} Vec(A)=(a11a21am1;a12a22am2;;a1na2namn)

向量化算子性质

  • 线性性质: V e c \mathbf{Vec} Vec是线性算子 V e c ( k 1 A + k 2 B ) = k 1 V e c ( A ) + k 2 V e c B \mathbf{Vec(k_1A+k_2B)=k_1Vec(A)+k_2Vec{B}} Vec(k1A+k2B)=k1Vec(A)+k2VecB
  • 矩阵乘法: V e c ( A B C ) = ( C ⊤ ⊗ A ) V e c ( B ) \mathbf{Vec(ABC)=(C^{\top}\otimes A)Vec(B)} Vec(ABC)=(CA)Vec(B), V e c ( A X ) = ( I ⊗ A ) V e c ( X ) \mathbf{Vec(AX)=(I \otimes A)Vec(X)} Vec(AX)=(IA)Vec(X), V e c ( X C ) = ( C ⊤ ⊗ I ) V e c ( X ) \mathbf{Vec(XC)=(C^{\top}\otimes I)Vec(X)} Vec(XC)=(CI)Vec(X)
  • 矩阵转置: V e c ( A ⊤ ) = K m n V e c ( A ) \mathbf{Vec}(\mathbf{A}^{\top})=\mathbf{K}_{mn}\mathbf{Vec(A)} Vec(A)=KmnVec(A)其中, K m n \mathbf{K}_{mn} Kmn m n × m n mn\times mn mn×mn的交换矩阵
  • 逐元素乘法: V e c ( A ⊙ X ) = d i a g ( V e c ( A ) ) V e c ( X ) \mathbf{Vec(A\odot X)}=diag(\mathbf{Vec(A)})\mathbf{Vec(X)} Vec(AX)=diag(Vec(A))Vec(X)其中 d i a g ( V e c ( A ) ) diag(\mathbf{Vec(A)}) diag(Vec(A)) m n × m n mn \times mn mn×mn的对角矩阵。
在MatLab中,矩阵向量化是一种将问题尽量用矩阵表示的技巧,以便进行高效的矩阵运算。通过向量化,可以避免对单个矩阵元素进行循环操作,从而提高代码的执行效率。在MatLab中,可以使用一些函数和技巧来实现矩阵向量化。 其中,可以使用函数"vectorize"将表达式向量化,使用函数"dot"进行向量点积运算,使用函数"cross"进行向量叉积运算,使用函数"dot"和"cross"进行向量混合积运算。此外,还可以使用一些数组运算函数来进行点运算,例如MatLab中的"matmul"函数。 通过矩阵向量化技巧,可以简化代码,提高运算效率,并且更符合MatLab的矩阵运算特性。因此,在编写MatLab代码时,可以考虑使用矩阵向量化来优化代码的性能。 #### 引用[.reference_title] - *1* *3* [矩阵向量化运算](https://blog.csdn.net/weixin_39816946/article/details/116367683)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [matlab矩阵向量化](https://blog.csdn.net/weixin_35867994/article/details/115881952)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值