从Tif文件转为shp文件(ArcMap,代码)、gdal打包问题 从Tif文件转为shp文件(ArcMap,代码)利用ArcMap来进行转换,以预测出来的滨海湿地图像为例第一步:打开ArcMap中的栅格转面工具ArcMap中的栅格转面工具点击栅格转面之后,选择参数和输出文件路径,如下图所示得到的结果即为在选择的文件夹下会生成如下文件第二步:属性归并查看tif原图和生成的shp图的属性表。下方左侧为tif原图的属性表,右侧为生成的shp图的属...
遥感图像稀疏表征与智能分析竞赛参赛笔记 遥感图像稀疏表征与智能分析竞赛参赛笔记前俩个月参加了由国家自然科学基金委信息科学部主办的“遥感图像稀疏表征与智能分析竞赛”,在这里分享一下参加比赛的一些感悟。数据集我参加的是语义分割主题,数据来源于高分二号MSS影像,分辨率为四米,影像尺寸为7200x6800,包括NIR,R, G, B四个波段。由于原始影像是用ENVI classic做的预处理,所以会导致一些读取错误,所以我都使用了ima...
【Python】Windows 下使用 pyinstaller 对 keras(tensorflow) 模型预测的代码文件打包 用到的几种主要的 python 包的版本(CPU)python:3.61、pyinstaller:3.3.1(打包成 exe)2、tensorflow:1.4.0(深度学习框架)3、keras:2.0.8(模型时基于 keras 训练的)4、opencv-python:4.1.0.25(主要用于图像数据的读取与存储)5、numpy:1.15.0(主要用于图像数据的矩阵操作)6、h5p...
利用ArcGIS Engine和C#二次开发遇到的问题及解决办法 利用ArcGIS Engine和C#二次开发遇到的问题及解决办法在利用ArcGIS Engine和C#二次开发的过程中,可能会遇到各种各样的配置及环境问题,下面是我在项目过程中遇到的问题以及相应的解决办法。1.ArcGIS 10.3安装遇到的问题ArcGIS 10.3的具体安装步骤安装完成后可能会遇到破解不完全的情况,即使ArcMap可以打开,但是在C#调用相关动态连接库的时候可能会出现问...
在vs2017中使用opencv4.0调用darknet框架模型 在vs2017中使用opencv4.0工具调用Darknet框架模型前言VS2017的下载及安装下载安装opencv4.0的下载及安装opencv4.0调用darknet框架模型的实例1. 在vs2017中创建项目2. 配置属性表3. 编写例子结束语前言在Linux操作系统中,用Darknet框架已实现目标检测模型训练,同时希望在windows系统中用到已训练的模型并实现目标的检测,这时将用到...
在Linux系统下将GDAL部署到eclipse开发环境 前言:前面已经将GDAL成功的配置在Linux下了,本篇文章主要是介绍一下如何将GDAL部署到eclipse下,在eclipse使用GDAL库进行图像的处理。另外,我是用C++来进行编译的,我系统中下载的g++版本如下图所示:g++的版本是4.8.5配置过程:1、导入环境变量因为是在默认路径下安装的,所以需要导入的环境变量为:export PATH=$PATH:/usr/local/b...
重磅 | 西安思考:“2018国际人工智能院长论坛”专家思想分享 原创: 人工智能学院 西电人工智能学院 6月10日本文档分为两个视频:视频一(P2-P14)和视频二(P14-P26)5月27-28日,2018国际人工智能院长论坛在西安成功举办,来自中、美、英、意等国,IEEE、中国人工智能学会等国内外专业技术组织的30余位人工智能领域顶级资深专家共襄盛举,阿里巴巴、Google、百度、商汤、华为、蒜泥、维恩等20余家中外人工智能行业领军企业的代表齐聚一堂,...
三个牛人教你怎么高效阅读论文 三个牛人教你怎么高效阅读论文科研牛人一从Ph.D到现在工作半年,发了12 篇paper, 7 篇first author我现在每天还保持读至少2-3 篇的文献的习惯,读文献有不同的读法,但最重要的自己总结概括这篇文献到底说了什么,否则就是白读,读的时候好像什么都明白,一合上就什么都不知道,这是读文献的大忌,既浪费时间,最重要的是没有养成良好的习惯,导致以后不愿意读文献。1、每次读完文献(不...
自然语言处理:重要采样的梯度推导 加速神经语言模型训练的一种方式是,避免明确的计算所有未出现在下一位置的词对梯度的贡献。每个不正确的词在此模型下具有低概率。枚举所有这些词的计算成本可能会很高。相反,我们可以仅采样词的子集,梯度的推导过程如下:∂logP(y∣C)∂θ=∂softmaxy(a)∂θ\frac{\partial logP(y|C)}{\partial \theta} = \frac{\partial softmax...
[AI教程]TensorFlow入门:使用卷积网络模型实现手势识别 介绍本文介绍了搭建简单的卷积网络模型进行手势数字识别数据集:https://github.com/stormstone/deeplearning.ai/tree/c38b8ea7cc7fef5caf88be6e06f4e3452690fde7工具:TensorFlow 1.9.0 + Python 3.6.31.相关包导入// An highlighted blockimport ma...
[AI教程]TensorFlow入门:通过二分类来比较神经网络模型和逻辑回归模型 介绍本文主要是建立一个包含一个隐藏层的神经网络, 体会神经网络模型和逻辑回归模型的不同。在本文中将涉及如下几个部分:- 使用神经网络实现二分类;- 使用非线性激活函数tanh;- 计算 cross entropy loss- 实现正向传播和反向传播;工具:TensorFlow 1.9.0 + Python 3.6.31、两个辅助.py文件使用两个辅助,py文件写入一些经常使用的内...
[AI教程]TensorFlow入门:使用TF-slim的模型做图像分类 文章目录1.简介2.文件说明3.训练过程3.1数据预处理3.2训练3.3测试1.简介tf-slim是TensorFlow的一个轻量级库,它基于TensorFlow实现了高层封装,将网络、loss、正则化等概念有调理的组织起来,而不是像原生tensorflow底层接口编程那样,到处充满了超参、网络定义、训练循环等。例如,定义一个卷积:with tf.name_scope('conv_a') ...
[AI教程]TensorFlow入门:手势数字识别 实验说明本实验为吴恩达课后编程作业第二课第三周内容,通过引导我们将完成一个深度学习框架,使我们可以更轻松地构建神经网络。编程框架不仅可以缩短编码时间,而且有时还可以执行加速代码的优化。数据集下载地址:[https://github.com/stormstone/deeplearning.ai/tree/c38b8ea7cc7fef5caf88be6e06f4e3452690fde7]工具:J...
[AI教程]TensorFlow入门:使用TensorBoard和MNIST数据集实现监控指标可视化 TensorBoard介绍TensorBoard是TensorFlow的可视化工具,它可以通过TensorFlow程序运行过程中输出的日志文件可视化TensorFlow程序的运行状态。TensorFlow和TensorBoard程序跑在不同的进程中,TensorBoard会自动读取最新的TensorFlow日志文件,并呈现当前程序运行的最新状态。下面通过使用MNIS数据集创建一个简单的神经网络实...
[AI教程]TensorFlow入门:Simple Linear Model 介绍本文演示了使用简单线性模型了解TensorFlow的基本工作流程。数据集:MNIST数据集工具:TensorFlow 1.9.0 + Python 3.6.3方法:简单线性模型1、importimport matplotlib.pyplot as pltimport tensorflow as tfimport numpy as npfrom sklearn.metrics ...