微分方程的定义

微分方程

 凡含有未知函数的导数或微分的方程叫微分方程。例如 y ′ = x y , y ′ ′ + 2 y ′ − 3 y = e x , ( t 2 + x ) d t + x d x = 0 y^{\prime}=xy,y^{\prime\prime}+2y^{\prime}-3y=e^{x},(t^2+x)dt+xdx=0 y=xy,y+2y3y=ex,(t2+x)dt+xdx=0

实质

 联系自变量,未知函数以及未知函数的某些导数(或微分)之间的关系式。

微分方程的阶

 微分方程中出现的未知函数的最高阶导数的阶数称之为微分方程的阶。

微分方程的分类

  • 分类1:常微分方程,偏微分方程。
  • 分类2:一阶微分方程 F ( x , y , y ′ ) = 0 , y ′ = f ( x , y ) F(x,y,y^{\prime})=0,y^{\prime}=f(x,y) F(x,y,y)=0,y=f(x,y)。高阶微分方 F ( x , y , y ′ , ⋯   , y n ) = 0 , y n = f ( x , y , y ′ , ⋯   , y n − 1 ) . F(x,y,y^{\prime},\cdots,y^{n})=0,y^{n}=f(x,y,y^{\prime},\cdots,y^{n-1}). F(x,y,y,,yn)=0,yn=f(x,y,y,,yn1).

微分方程的解

 代入微分方程能使方程称为恒等式的函数。设 y = φ ( x ) y=\varphi(x) y=φ(x)在区间 I I I上有 n n n阶导数, F ( x , φ ( x ) , φ ′ ( x ) , ⋯   , φ ( n ) ) = 0. F(x,\varphi(x),\varphi^{\prime}(x),\cdots,\varphi^{(n)})=0. F(x,φ(x),φ(x),,φ(n))=0.

微分方程解的分类

  • 通解:微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同。例如 y ′ = y y^{\prime}=y y=y的通解为 y = C e x y=Ce^{x} y=Cex y ′ ′ + y = 0 y^{\prime\prime}+y=0 y+y=0的通解为 y = C 1 sin ⁡ x + C 2 cos ⁡ x y=C_1\sin x +C_2 \cos x y=C1sinx+C2cosx
  • 特解:确定了通解中任意常数以后的解。解的图像为微分方程的积分曲线。通解的图像为积分曲线族。初始条件为用来确定任意常数的条件。

初始条件

n n n阶方程的初始条件(或初值条件) y ( x 0 ) = y 0 , y ′ ( x 0 ) = y 0 ′ , ⋯   , y ( n − 1 ) ( x 0 ) = y 0 ( n − 1 ) y(x_0)=y_0,y^{\prime}(x_0)=y^{\prime}_0,\cdots,y^{(n-1)}(x_0)=y^{(n-1)}_0 y(x0)=y0,y(x0)=y0,,y(n1)(x0)=y0(n1)

初值条件

 求微分方程满足初始条件的特解的问题,记作 { y ( n ) = f ( x , y , y ′ , ⋯   , y ( n − 1 ) ) y ( x 0 ) = y 0 , y ′ ( x 0 ) = y 0 ′ , ⋯   , y ( n − 1 ) ( x 0 ) = y 0 ( n − 1 ) \left\{\begin{array}{l}y^{(n)}=f(x,y,y^{\prime},\cdots,y^{(n-1)})\\y(x_0)=y_0,y^{\prime}(x_0)=y^{\prime}_0,\cdots,y^{(n-1)}(x_0)=y^{(n-1)}_0\end{array}\right. {y(n)=f(x,y,y,,y(n1))y(x0)=y0,y(x0)=y0,,y(n1)(x0)=y0(n1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值