微分方程
凡含有未知函数的导数或微分的方程叫微分方程。例如 y ′ = x y , y ′ ′ + 2 y ′ − 3 y = e x , ( t 2 + x ) d t + x d x = 0 y^{\prime}=xy,y^{\prime\prime}+2y^{\prime}-3y=e^{x},(t^2+x)dt+xdx=0 y′=xy,y′′+2y′−3y=ex,(t2+x)dt+xdx=0
实质
联系自变量,未知函数以及未知函数的某些导数(或微分)之间的关系式。
微分方程的阶
微分方程中出现的未知函数的最高阶导数的阶数称之为微分方程的阶。
微分方程的分类
- 分类1:常微分方程,偏微分方程。
- 分类2:一阶微分方程 F ( x , y , y ′ ) = 0 , y ′ = f ( x , y ) F(x,y,y^{\prime})=0,y^{\prime}=f(x,y) F(x,y,y′)=0,y′=f(x,y)。高阶微分方 F ( x , y , y ′ , ⋯ , y n ) = 0 , y n = f ( x , y , y ′ , ⋯ , y n − 1 ) . F(x,y,y^{\prime},\cdots,y^{n})=0,y^{n}=f(x,y,y^{\prime},\cdots,y^{n-1}). F(x,y,y′,⋯,yn)=0,yn=f(x,y,y′,⋯,yn−1).
微分方程的解
代入微分方程能使方程称为恒等式的函数。设 y = φ ( x ) y=\varphi(x) y=φ(x)在区间 I I I上有 n n n阶导数, F ( x , φ ( x ) , φ ′ ( x ) , ⋯ , φ ( n ) ) = 0. F(x,\varphi(x),\varphi^{\prime}(x),\cdots,\varphi^{(n)})=0. F(x,φ(x),φ′(x),⋯,φ(n))=0.
微分方程解的分类
- 通解:微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同。例如 y ′ = y y^{\prime}=y y′=y的通解为 y = C e x y=Ce^{x} y=Cex。 y ′ ′ + y = 0 y^{\prime\prime}+y=0 y′′+y=0的通解为 y = C 1 sin x + C 2 cos x y=C_1\sin x +C_2 \cos x y=C1sinx+C2cosx。
- 特解:确定了通解中任意常数以后的解。解的图像为微分方程的积分曲线。通解的图像为积分曲线族。初始条件为用来确定任意常数的条件。
初始条件
n n n阶方程的初始条件(或初值条件) y ( x 0 ) = y 0 , y ′ ( x 0 ) = y 0 ′ , ⋯ , y ( n − 1 ) ( x 0 ) = y 0 ( n − 1 ) y(x_0)=y_0,y^{\prime}(x_0)=y^{\prime}_0,\cdots,y^{(n-1)}(x_0)=y^{(n-1)}_0 y(x0)=y0,y′(x0)=y0′,⋯,y(n−1)(x0)=y0(n−1)
初值条件
求微分方程满足初始条件的特解的问题,记作 { y ( n ) = f ( x , y , y ′ , ⋯ , y ( n − 1 ) ) y ( x 0 ) = y 0 , y ′ ( x 0 ) = y 0 ′ , ⋯ , y ( n − 1 ) ( x 0 ) = y 0 ( n − 1 ) \left\{\begin{array}{l}y^{(n)}=f(x,y,y^{\prime},\cdots,y^{(n-1)})\\y(x_0)=y_0,y^{\prime}(x_0)=y^{\prime}_0,\cdots,y^{(n-1)}(x_0)=y^{(n-1)}_0\end{array}\right. {y(n)=f(x,y,y′,⋯,y(n−1))y(x0)=y0,y′(x0)=y0′,⋯,y(n−1)(x0)=y0(n−1)