高等数学-微分方程

基本概念

微分方程:用来表示未知函数、函数的导数与自变量之间的关系的方程。
n阶微分方程的形式
F ( x , y , y ′ , . . , y ( n ) ) = 0 F(x,y,y',..,y^(n^)) = 0 F(x,y,y,..,y(n))=0

可分离变量的微分方程

一阶微分方程有时也写成如下的对称形式:
P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx + Q(x,y)dy =0 P(x,y)dx+Q(x,y)dy=0
一般地,如果一个一阶微分方程能写成
g ( y ) d y = f ( x ) d x g(y)dy = f(x)dx g(y)dy=f(x)dx那么原方程就称为可分离变量的微分方程

齐次方程

一般地,如果一阶微分方程可化成:
d y d x = φ ( y x ) \frac{dy}{dx} = \varphi(\frac{y}{x}) dxdy=φ(xy)
令: u = y x u = \frac{y}{x} u=xy

d y d x = u + x d u d x ; y = u x \frac{dy}{dx} = u + x\frac{du}{dx};y=ux dxdy=u+xdxdu;y=ux
齐次方程可化解成可分离变量微分方程进行求解
u + x d u d x = φ ( u ) u + x\frac{du}{dx} = \varphi(u) u+xdxdu=φ(u)
d u φ ( u ) − u = d x x \frac{du}{\varphi(u)-u} = \frac{dx}{x} φ(u)udu=xdx
积分
∫ d u φ ( u ) − u = ∫ d x x \int\frac{du}{\varphi(u)-u} = \int\frac{dx}{x} φ(u)udu=xdx

可化为齐次的方程

方程
d y d x = a x + b y + c a 1 x + b 1 y + c 1 \frac{dy}{dx} = \frac{ax+by+c}{a_1x+b_1y+c_1} dxdy=a1x+b1y+c1ax+by+c
c = c 1 c=c_1 c=c1的时候是齐次的,不等的时候非齐次。
上述非齐次=>齐次,可令:
x = X + h , y = Y + k x=X+h, y=Y+k x=X+h,y=Y+k
d x = d X , d y = d Y dx=dX,dy=dY dx=dX,dy=dY
带入原方程组得:
d Y d X = a X + b Y + a h + b k + c a 1 X + b 1 Y + a 1 h + b 1 k + c 1 \frac{dY}{dX} = \frac{aX+bY+ah+bk+c}{a_1X+b_1Y+a_1h+b_1k+c_1} dXdY=a1X+b1Y+a1h+b1k+c1aX+bY+ah+bk+c
{ a h + b k + c = 0 a 1 h + b 1 k + c 1 = 0 \begin{cases} ah+bk+c=0 \\ a_1h+b_1k+c_1=0 \end{cases} {ah+bk+c=0a1h+b1k+c1=0
如果 a a 1 ≠ b b 1 \frac{a}{a_1} \ne \frac{b}{b_1} a1a̸=b1b,可求得h,k使得
d Y d X = a X + b Y a 1 X + b 1 Y \frac{dY}{dX} = \frac{aX+bY}{a_1X+b_1Y} dXdY=a1X+b1YaX+bY
求出该齐次方程通解,将X=x-h,Y=y-k带入即得原方程的通解
如果 a a 1 = b b 1 \frac{a}{a_1} = \frac{b}{b_1} a1a=b1b,令 a 1 a = b 1 b = λ \frac{a_1}{a} = \frac{b_1}{b} = \lambda aa1=bb1=λ
原方程可化成
d y d x = a x + b y + c λ ( a x + b y ) + c 1 \frac{dy}{dx} = \frac{ax+by+c}{\lambda(ax+by)+c_1} dxdy=λ(ax+by)+c1ax+by+c
令: v = a x + b y v=ax+by v=ax+by
d v d x = a + b d y d x \frac{dv}{dx} = a + b\frac{dy}{dx} \\ dxdv=a+bdxdy
原方程可化为
1 b ( d v d x − a ) = v + c λ v + c 1 可分离变量微分方程 \frac{1}{b}(\frac{dv}{dx}-a) = \frac{v+c}{\lambda v+c_1} \text{可分离变量微分方程} b1(dxdva)=λv+c1v+c可分离变量微分方程

一阶线性微分方程

一阶线性微分方程: d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x),如果 Q ( x ) = 0 Q(x)=0 Q(x)=0,则为齐次的。
齐次的一阶线性微分方程是可分离变量的微分方程
d y d x + P ( x ) y = 0 \frac{dy}{dx} + P(x)y =0 dxdy+P(x)y=0
d y y = − P ( x ) d x \frac{dy}{y} = -P(x)dx ydy=P(x)dx
积分得齐次的通解: y = C e − ∫ p ( x ) d x y=Ce^{-\int{p(x)}dx} y=Cep(x)dx

使用常数变易法求非齐次的通解,令 y = u ( x ) e − ∫ p ( x ) d x y=u(x)e^{-\int{p(x)dx}} y=u(x)ep(x)dx,对x求导
d y d x = u ′ e − ∫ p ( x ) d x − u P ( x ) e − ∫ p ( x ) d x \frac{dy}{dx} = u'e^{-\int{p(x)dx}} - uP(x)e^{-\int{p(x)dx}} dxdy=uep(x)dxuP(x)ep(x)dx
带入原方程得
u = Q ( x ) e ∫ p ( x ) d x d x + C u = Q(x)e^{\int{p(x)dx}}dx+C u=Q(x)ep(x)dxdx+C
则非齐次一阶线性微分方程的通解
y = u e − ∫ p ( x ) d x d x = C e − ∫ p ( x ) d x + e − ∫ p ( x ) d x ∫ Q ( x ) e p ( x ) d x d x y=ue^{-\int{p(x)dx}}dx =Ce^{-\int{p(x)dx}} +e^{-\int{p(x)dx}}\int{Q(x)e^{p(x)dx}dx} y=uep(x)dxdx=Cep(x)dx+ep(x)dxQ(x)ep(x)dxdx

伯努利方程

伯努利方程: d y d x + P ( x ) y = Q ( x ) y n \frac{dy}{dx}+P(x)y=Q(x)y^n dxdy+P(x)y=Q(x)yn,n不等于0,1
解法:
等式两边同除以 y n y^n yn,
y − n d y d x + p ( x ) y 1 − n = Q ( x ) y^{-n}\frac{dy}{dx}+p(x)y^{1-n}=Q(x) yndxdy+p(x)y1n=Q(x),令 z = y 1 − n z=y^{1-n} z=y1n
d z d x = ( 1 − n ) y − n d y d x \frac{dz}{dx} =(1-n)y^{-n}\frac{dy}{dx} dxdz=(1n)yndxdy
带入原方程得:
d z d x + ( 1 − n ) p ( x ) z = ( 1 − n ) Q ( x ) 线性微分方程 \frac{dz}{dx}+(1-n)p(x)z=(1-n)Q(x) \text{线性微分方程} dxdz+(1n)p(x)z=(1n)Q(x)线性微分方程

可降阶的高阶微分方程

y ( n ) = f ( x ) 型 微 分 方 程 y^{(n)}=f(x)型微分方程 y(n)=f(x)

n次积分就可以得到原方程的通解

y ′ ′ = f ( x , y ′ ) 型 微 分 方 程 y''=f(x, y')型微分方程 y=f(x,y)

这种不含y的微分方程,令 p = y ′ p=y' p=y,则 y ′ ′ = d p d x = p ′ y'' = \frac{dp}{dx} = p' y=dxdp=p
原方程: p ′ = f ( x , p ) p'=f(x,p) p=f(x,p),一阶线性微分方程,可求得p,再积分得y

y ′ ′ = f ( y , y ′ ) 型 微 分 方 程 y'' = f(y,y')型微分方程 y=f(y,y)

不含x微分方程,令 p = y ′ p=y' p=y,则 y ′ ′ = d p d y d y d x = p d p d y y'' = \frac{dp}{dy}\frac{dy}{dx} = p\frac{dp}{dy} y=dydpdxdy=pdydp
原方程: p d p d y = f ( y , p ) p\frac{dp}{dy} = f(y,p) pdydp=f(y,p),可求得p,再对x积分可得通解y

高阶微分方程

线性微分方程接的结构

如果函数 y 1 ( x ) y_1{(x)} y1(x) y 2 ( x ) y_2{(x)} y2(x)是二阶齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y''+P(x)y'+Q(x)y=0 y+P(x)y+Q(x)y=0的两个解,那么
y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)也是方程的解,C1和C2是任意常数

如果 y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x)线性无关,则 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)是方程的通解

常数变易法

假设齐次方程的通解为 Y ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) Y(x)=C_1y_1(x)+C_2y_2(x) Y(x)=C1y1(x)+C2y2(x),令 y = y 1 ( x ) v 1 + y 2 ( x ) v 2 y=y_1(x)v_1+y_2(x)v_2 y=y1(x)v1+y2(x)v2,
求导:
y ′ = y 1 v 1 ′ + y 2 v 2 ′ + y 1 ′ v + y 2 ′ v 2 y'=y_1v_1'+y_2v_2'+y_1'v_+y_2'v_2 y=y1v1+y2v2+y1v+y2v2
令: y 1 v 1 ′ + y 2 v 2 ′ = 0 y_1v_1'+y_2v_2'=0 y1v1+y2v2=0
再求导:
y ′ ′ = y 1 ′ v 1 ′ + y 2 ′ v 2 ′ + y 1 ′ ′ v 1 + y 2 ′ ′ v 2 y''=y_1'v_1'+y_2'v_2'+y_1''v_1+y_2''v_2 y=y1v1+y2v2+y1v1+y2v2
带入原方程:
y 1 ′ v 1 ′ + y 2 ′ v 2 ′ + ( y 1 ′ ′ + P y 1 ′ + Q y 1 ) + ( y 2 ′ ′ + P y 2 ′ + Q y 2 ) v 2 = f y_1'v_1'+y_2'v_2'+(y_1''+Py_1'+Qy_1)+(y_2''+Py_2'+Qy_2)v_2=f y1v1+y2v2+(y1+Py1+Qy1)+(y2+Py2+Qy2)v2=f
得:
y 1 ′ v 1 ′ + y 2 ′ v 2 ′ = f y_1'v_1'+y_2'v_2' = f y1v1+y2v2=f
联立
{ y 1 v 1 ′ + y 2 v 2 ′ = 0 y 1 ′ v 1 ′ + y 2 ′ v 2 ′ = f \begin{cases} y_1v_1'+y_2v_2'=0\\ y_1'v_1'+y_2'v_2' = f \end{cases} {y1v1+y2v2=0y1v1+y2v2=f
求得 v 1 ′ , v 2 ′ v_1',v_2' v1,v2并积分得 v 1 , v 2 v_1,v_2 v1,v2带入 y = v 1 y 1 ( x ) + v 2 y 2 ( x ) y=v_1y_1(x)+v_2y_2(x) y=v1y1(x)+v2y2(x)得通解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值