概率论中的特征函数

特征函数的介绍

p ( x ) p(x) p(x)是随机变量 X X X密度函数,则 p ( x ) p(x) p(x)的傅里叶变换是 φ ( t ) = ∫ − ∞ ∞ e i t x p ( x ) d x , \varphi(t)=\int^{\infty}_{-\infty}e^{itx}p(x)dx, φ(t)=eitxp(x)dx,由数学期望的概念可知, φ ( t ) \varphi(t) φ(t)恰好是 E ( e i t X ) \mathbb{E}(e^{itX}) E(eitX)。特征函数是处理概率论问题的有力工具,其作用在于:

  • 可将卷积运算化成乘法运算;
  • 可将求各阶矩的积分运算化成微分运算;
  • 可将求随机变量序列的极限分布化成一般的函数极限问题 。

特征函数的定义

X X X是一随机变量,称 φ ( t ) = E ( e i t X ) \varphi(t)=\mathbb{E}(e^{itX}) φ(t)=E(eitX) X X X的特征函数,其中 i = − 1 i=\sqrt{-1} i=1 是虚数单位。

  • X X X为离散随机变量时, φ ( t ) = ∑ k = 1 ∞ e i t x k p k \varphi(t)=\sum\limits_{k=1}^{\infty}e^{itx_k}p_k φ(t)=k=1eitxkpk
  • X X X为连续随机变量时, φ ( t ) = ∫ − ∞ + ∞ e i t x p ( x ) d x \varphi(t)=\int^{+\infty}_{-\infty}e^{itx}p(x)dx φ(t)=+eitxp(x)dx

特征函数的计算中用到复变函数,因此注意:

  • 欧拉公式: e i t x = cos ⁡ ( t x ) + i sin ⁡ ( t x ) e^{itx}=\cos(tx)+i\sin(tx) eitx=cos(tx)+isin(tx)
  • 复数的共轭: a + b i ‾ = a − b i \overline{a+bi}=a-bi a+bi=abi
  • 复数的模: ∣ a + b i ∣ = a 2 + b 2 |a+bi|=\sqrt{a^2+b^2} a+bi=a2+b2

特征函数的性质

  • 性质1: ∣ φ ( t ) ∣ ≤ φ ( 0 ) = 1 |\varphi(t)|\le\varphi(0)=1 φ(t)φ(0)=1
  • 性质2: φ ( − t ) = φ ( t ) ‾ \varphi(-t)=\overline{\varphi(t)} φ(t)=φ(t)
  • 性质3: φ a X + b ( t ) = e i b t φ X ( a t ) \varphi_{aX+b}(t)=e^{ibt}\varphi_{X}(at) φaX+b(t)=eibtφX(at)
  • 性质4:若 X X X Y Y Y独立,则 φ X + Y ( t ) = φ X ( t ) φ Y ( t ) \varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t) φX+Y(t)=φX(t)φY(t)
  • 性质5: φ ( k ) ( 0 ) = i k E ( X ) \varphi^{(k)}(0)=i^k\mathbb{E}^(X) φ(k)(0)=ikE(X)

常用分布的特征函数

  • 单点分布 P ( X = a ) = 1 P(X=a)=1 P(X=a)=1,其特征函数为 φ ( t ) = e i t a \varphi(t)=e^{ita} φ(t)=eita
  • 0-1分布 P ( X = x ) = p x ( 1 − p ) 1 − x P(X=x)=p^x(1-p)^{1-x} P(X=x)=px(1p)1x x = 0 , 1 x=0,1 x=0,1,其特征函数为 φ ( t ) = p e i t + q \varphi(t)=pe^{it}+q φ(t)=peit+q,其中 q = 1 − p q=1-p q=1p
  • 泊松分布 P ( λ ) P(\lambda) P(λ) P ( X = k ) = λ k k ! e − λ P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda} P(X=k)=k!λkeλ k = 0 , 1 , ⋯ k=0,1,\cdots k=0,1,,其特征函 φ ( t ) = ∑ k = 0 ∞ e i k t λ k k ! e − λ = e − λ ∑ k = 0 ∞ ( λ e i t ) k k ! e − λ e i t e λ e i t = e − λ e λ e i t = e λ ( e i t − 1 ) \begin{aligned}\varphi(t)&=\sum\limits_{k=0}^{\infty}e^{ikt}\frac{\lambda^k}{k!}e^{-\lambda}=e^{-\lambda}\sum\limits_{k=0}^{\infty}\frac{(\lambda e^{it})^k}{k!}e^{-\lambda e^{it}}e^{\lambda e^{it}}\\&=e^{-\lambda}e^{\lambda e^{it}}=e^{\lambda(e^{it}-1)}\end{aligned} φ(t)=k=0eiktk!λkeλ=eλk=0k!(λeit)keλeiteλeit=eλeλeit=eλ(eit1)
  • 均匀分布 U ( a , b ) U(a,b) U(a,b) 因为密度函数为 p ( x ) = { 1 b − a , a < x < b 0 , 其 它 p(x)=\left\{\begin{array}{ll}\frac{1}{b-a},&a<x<b\\0,&其它\end{array}\right. p(x)={ba1,0,a<x<b所以其特征函数为 φ ( t ) = ∫ a b e i t x b − a d x = e i b t − e i a t i t ( b − a ) \varphi(t)=\int^b_a\frac{e^{itx}}{b-a}dx=\frac{e^{ibt}-e^{iat}}{it(b-a)} φ(t)=abbaeitxdx=it(ba)eibteiat
  • 标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 因为密度函数为 p ( x ) = 1 2 π e − x 2 2 , − ∞ < x < ∞ p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty<x<\infty p(x)=2π 1e2x2,<x<所以其特征函数为 φ ( t ) = e − t 2 2 \varphi(t)=e^{-\frac{t^2}{2}} φ(t)=e2t2
  • 指数分布 E x p ( λ ) Exp(\lambda) Exp(λ) 因为密度函数为 p ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 p(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x},&x > 0\\0,&x \le0\end{array}\right. p(x)={λeλx,0,x>0x0所以其特征函数表示为 φ ( t ) = ∫ 0 ∞ e i t x λ e λ x d x = ( 1 − i t λ ) − 1 \varphi(t)=\int^{\infty}_{0}e^{itx}\lambda e^{\lambda x}dx=\left(1-\frac{it}{\lambda}\right)^{-1} φ(t)=0eitxλeλxdx=(1λit)1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值