独立同分布下的中心极限定理
定理:(林德伯格—莱维中心极限定理) 设
{
X
n
}
\{X_n\}
{Xn}是独立同分布的随机变量序列,且
E
(
X
i
)
=
u
\mathrm{E}(X_i)=u
E(Xi)=u,
V
a
r
(
X
i
)
=
σ
2
>
0
\mathrm{Var}(X_i)=\sigma^2>0
Var(Xi)=σ2>0存在,若记
Y
n
∗
=
X
1
+
X
2
+
⋯
+
X
n
−
n
μ
σ
n
,
Y^{*}_n=\frac{X_1+X_2+\cdots+X_n-n \mu}{\sigma\sqrt{n}},
Yn∗=σnX1+X2+⋯+Xn−nμ,则对任意实数
y
y
y,有
lim
n
→
∞
P
(
Y
n
∗
≤
y
)
=
ϕ
(
y
)
=
1
2
π
∫
−
∞
y
e
−
t
2
2
d
t
\lim\limits_{n\rightarrow\infty}P(Y^{*}_{n}\le y)=\phi(y)=\frac{1}{\sqrt{2\pi}}\int^{y}_{-\infty}e^{-\frac{t^2}{2}}dt
n→∞limP(Yn∗≤y)=ϕ(y)=2π1∫−∞ye−2t2dt
证明: 证明
{
Y
n
∗
}
\{Y^{*}_n\}
{Yn∗}的分布函数列收敛于标准正态分布,则证明
{
Y
n
∗
}
\{Y^{*}_n\}
{Yn∗}的特征函数列收敛于标准正态分布的特征函数。为此设
X
n
X_n
Xn-
μ
\mu
μ的特征函数为
φ
(
t
)
\varphi(t)
φ(t),则
Y
n
∗
Y^{*}_n
Yn∗的特征函数为
φ
Y
n
∗
(
t
)
=
[
φ
(
t
σ
n
)
]
n
\varphi_{Y^{*}_n}(t)=\left[\varphi\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n
φYn∗(t)=[φ(σnt)]n又因为
E
(
X
n
−
μ
)
=
0
\mathrm{E}(X_n-\mu)=0
E(Xn−μ)=0,
V
a
r
(
X
n
−
μ
)
=
σ
2
\mathrm{Var}(X_n-\mu)=\sigma^2
Var(Xn−μ)=σ2,所以有
φ
′
(
0
)
=
0
,
φ
′
′
(
0
)
=
−
σ
2
\varphi^{\prime}(0)=0,\quad \varphi^{\prime\prime}(0)=-\sigma^2
φ′(0)=0,φ′′(0)=−σ2于是特征函数
φ
(
t
)
\varphi(t)
φ(t)有展开式
φ
(
t
)
=
φ
(
0
)
+
φ
′
(
0
)
t
+
φ
′
′
(
0
)
t
2
2
+
o
(
t
2
)
=
1
−
1
2
σ
2
t
2
+
o
(
t
2
)
\begin{aligned}\varphi(t)&=\varphi(0)+\varphi^{\prime}(0)t+\varphi^{\prime\prime}(0)\frac{t^2}{2}+o(t^2)\\&=1-\frac{1}{2}\sigma^2t^2+o(t^2)\end{aligned}
φ(t)=φ(0)+φ′(0)t+φ′′(0)2t2+o(t2)=1−21σ2t2+o(t2)从而有
lim
n
→
∞
φ
Y
n
∗
(
t
)
=
lim
n
→
∞
[
1
−
t
2
2
n
+
o
(
t
2
n
)
]
n
=
e
−
t
2
/
2
\lim\limits_{n\rightarrow \infty}\varphi_{Y^{*}_{n}}(t)=\lim\limits_{n\rightarrow\infty}\left[1-\frac{t^2}{2n}+o(\frac{t^2}{n})\right]^n=e^{-t^2/2}
n→∞limφYn∗(t)=n→∞lim[1−2nt2+o(nt2)]n=e−t2/2而
e
−
t
2
/
2
e^{-t^2/2}
e−t2/2正是
N
(
0
,
1
)
N(0,1)
N(0,1)分布的特征函数,定理得证。
该定理假设
{
X
n
}
\{X_n\}
{Xn}独立同分布,方差存在,不管原来的分布是什么,只要
n
n
n充分大,就可以用正态分布去逼近随机变量和的分布。
二项分布的正态近似
定理: (棣莫弗-拉普拉斯中心极限定理)设
n
n
n重伯努利试验中,事件
A
A
A在每次试验中出现的概率为
p
(
0
<
p
<
1
)
p(0<p<1)
p(0<p<1),记
s
n
s_n
sn为
n
n
n次试验中事件
A
A
A出现的次数,且记
Y
n
∗
=
s
n
−
n
p
n
p
q
Y^{*}_{n}=\frac{s_n-np}{\sqrt{npq}}
Yn∗=npqsn−np则对任意实数
y
y
y,有
lim
n
→
∞
P
(
Y
n
∗
≤
y
)
=
ϕ
(
y
)
=
1
2
π
∫
−
∞
y
e
−
t
2
2
d
t
\lim\limits_{n \rightarrow \infty}P(Y^{*}_n\le y)=\phi(y)=\frac{1}{\sqrt{2\pi}}\int^{y}_{-\infty}e^{\frac{-t^2}{2}}dt
n→∞limP(Yn∗≤y)=ϕ(y)=2π1∫−∞ye2−t2dt
棣莫弗-拉普拉斯中心极限定理是概率论历史上的第一个中心极限定理,它是专门针对二项分布的,因此称为"二项分布的正态近似"。
林德伯格中心极限定理
定理: 设独立随机变量序列 { X n } \{X_n\} {Xn}满足林德伯格条件,则对任意的 x x x,有 lim n → ∞ P ( 1 B ∑ i = 1 n ( X i − μ i ) ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \lim\limits_{n\rightarrow \infty}P\left(\frac{1}{B}\sum\limits_{i=1}^n(X_i-\mu_i)\le x\right)=\frac{1}{\sqrt{2\pi}}\int^x_{-\infty}e^{-t^2/2}dt n→∞limP(B1i=1∑n(Xi−μi)≤x)=2π1∫−∞xe−t2/2dt
李雅普诺夫中心极限定理
定理: 设 { X n } \{X_n\} {Xn}为独立随机变量序列,若存在 δ > 0 \delta>0 δ>0,满足 lim n → ∞ 1 B n 2 + δ ∑ i = 1 n E ( ∣ X i − μ i ∣ 2 + δ ) = 0 , \lim\limits_{n\rightarrow\infty}\frac{1}{B^{2+\delta}_{n}}\sum\limits_{i=1}^n\mathrm{E}(|X_i-\mu_i|^{2+\delta})=0, n→∞limBn2+δ1i=1∑nE(∣Xi−μi∣2+δ)=0,则对任意的 x x x,有 lim n → ∞ P ( 1 B n ∑ i = 1 n ( X i − u i ) ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \lim\limits_{n\rightarrow \infty}P\left(\frac{1}{B_n}\sum\limits_{i=1}^n(X_i-u_i)\le x\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}dt n→∞limP(Bn1i=1∑n(Xi−ui)≤x)=2π1∫−∞xe−t2/2dt