中心极限定理

本文详细阐述了中心极限定理的不同形式,包括林德伯格—莱维中心极限定理、棣莫弗-拉普拉斯中心极限定理、林德伯格中心极限定理以及李雅普诺夫中心极限定理,并提供了详细的数学证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

独立同分布下的中心极限定理

定理:(林德伯格—莱维中心极限定理) { X n } \{X_n\} {Xn}是独立同分布的随机变量序列,且 E ( X i ) = u \mathrm{E}(X_i)=u E(Xi)=u V a r ( X i ) = σ 2 > 0 \mathrm{Var}(X_i)=\sigma^2>0 Var(Xi)=σ2>0存在,若记 Y n ∗ = X 1 + X 2 + ⋯ + X n − n μ σ n , Y^{*}_n=\frac{X_1+X_2+\cdots+X_n-n \mu}{\sigma\sqrt{n}}, Yn=σn X1+X2++Xnnμ,则对任意实数 y y y,有 lim ⁡ n → ∞ P ( Y n ∗ ≤ y ) = ϕ ( y ) = 1 2 π ∫ − ∞ y e − t 2 2 d t \lim\limits_{n\rightarrow\infty}P(Y^{*}_{n}\le y)=\phi(y)=\frac{1}{\sqrt{2\pi}}\int^{y}_{-\infty}e^{-\frac{t^2}{2}}dt nlimP(Yny)=ϕ(y)=2π 1ye2t2dt
证明: 证明 { Y n ∗ } \{Y^{*}_n\} {Yn}的分布函数列收敛于标准正态分布,则证明 { Y n ∗ } \{Y^{*}_n\} {Yn}的特征函数列收敛于标准正态分布的特征函数。为此设 X n X_n Xn- μ \mu μ的特征函数为 φ ( t ) \varphi(t) φ(t),则 Y n ∗ Y^{*}_n Yn的特征函数为 φ Y n ∗ ( t ) = [ φ ( t σ n ) ] n \varphi_{Y^{*}_n}(t)=\left[\varphi\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n φYn(t)=[φ(σn t)]n又因为 E ( X n − μ ) = 0 \mathrm{E}(X_n-\mu)=0 E(Xnμ)=0 V a r ( X n − μ ) = σ 2 \mathrm{Var}(X_n-\mu)=\sigma^2 Var(Xnμ)=σ2,所以有 φ ′ ( 0 ) = 0 , φ ′ ′ ( 0 ) = − σ 2 \varphi^{\prime}(0)=0,\quad \varphi^{\prime\prime}(0)=-\sigma^2 φ(0)=0,φ(0)=σ2于是特征函数 φ ( t ) \varphi(t) φ(t)有展开式 φ ( t ) = φ ( 0 ) + φ ′ ( 0 ) t + φ ′ ′ ( 0 ) t 2 2 + o ( t 2 ) = 1 − 1 2 σ 2 t 2 + o ( t 2 ) \begin{aligned}\varphi(t)&=\varphi(0)+\varphi^{\prime}(0)t+\varphi^{\prime\prime}(0)\frac{t^2}{2}+o(t^2)\\&=1-\frac{1}{2}\sigma^2t^2+o(t^2)\end{aligned} φ(t)=φ(0)+φ(0)t+φ(0)2t2+o(t2)=121σ2t2+o(t2)从而有 lim ⁡ n → ∞ φ Y n ∗ ( t ) = lim ⁡ n → ∞ [ 1 − t 2 2 n + o ( t 2 n ) ] n = e − t 2 / 2 \lim\limits_{n\rightarrow \infty}\varphi_{Y^{*}_{n}}(t)=\lim\limits_{n\rightarrow\infty}\left[1-\frac{t^2}{2n}+o(\frac{t^2}{n})\right]^n=e^{-t^2/2} nlimφYn(t)=nlim[12nt2+o(nt2)]n=et2/2 e − t 2 / 2 e^{-t^2/2} et2/2正是 N ( 0 , 1 ) N(0,1) N(0,1)分布的特征函数,定理得证。
 该定理假设 { X n } \{X_n\} {Xn}独立同分布,方差存在,不管原来的分布是什么,只要 n n n充分大,就可以用正态分布去逼近随机变量和的分布。

二项分布的正态近似

定理: (棣莫弗-拉普拉斯中心极限定理)设 n n n重伯努利试验中,事件 A A A在每次试验中出现的概率为 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1),记 s n s_n sn n n n次试验中事件 A A A出现的次数,且记 Y n ∗ = s n − n p n p q Y^{*}_{n}=\frac{s_n-np}{\sqrt{npq}} Yn=npq snnp则对任意实数 y y y,有 lim ⁡ n → ∞ P ( Y n ∗ ≤ y ) = ϕ ( y ) = 1 2 π ∫ − ∞ y e − t 2 2 d t \lim\limits_{n \rightarrow \infty}P(Y^{*}_n\le y)=\phi(y)=\frac{1}{\sqrt{2\pi}}\int^{y}_{-\infty}e^{\frac{-t^2}{2}}dt nlimP(Yny)=ϕ(y)=2π 1ye2t2dt
 棣莫弗-拉普拉斯中心极限定理是概率论历史上的第一个中心极限定理,它是专门针对二项分布的,因此称为"二项分布的正态近似"。

林德伯格中心极限定理

定理: 设独立随机变量序列 { X n } \{X_n\} {Xn}满足林德伯格条件,则对任意的 x x x,有 lim ⁡ n → ∞ P ( 1 B ∑ i = 1 n ( X i − μ i ) ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \lim\limits_{n\rightarrow \infty}P\left(\frac{1}{B}\sum\limits_{i=1}^n(X_i-\mu_i)\le x\right)=\frac{1}{\sqrt{2\pi}}\int^x_{-\infty}e^{-t^2/2}dt nlimP(B1i=1n(Xiμi)x)=2π 1xet2/2dt

李雅普诺夫中心极限定理

定理: { X n } \{X_n\} {Xn}为独立随机变量序列,若存在 δ > 0 \delta>0 δ>0,满足 lim ⁡ n → ∞ 1 B n 2 + δ ∑ i = 1 n E ( ∣ X i − μ i ∣ 2 + δ ) = 0 , \lim\limits_{n\rightarrow\infty}\frac{1}{B^{2+\delta}_{n}}\sum\limits_{i=1}^n\mathrm{E}(|X_i-\mu_i|^{2+\delta})=0, nlimBn2+δ1i=1nE(Xiμi2+δ)=0,则对任意的 x x x,有 lim ⁡ n → ∞ P ( 1 B n ∑ i = 1 n ( X i − u i ) ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \lim\limits_{n\rightarrow \infty}P\left(\frac{1}{B_n}\sum\limits_{i=1}^n(X_i-u_i)\le x\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}dt nlimP(Bn1i=1n(Xiui)x)=2π 1xet2/2dt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值