中心极限定理的证明

中心极限定理是作为概率论的基础定理,然而很多教科书都没有给出完整证明或引证出处,严重影响到了学习的乐趣。通过在网上查找资料,感谢网友的分享,最终根据傅立叶变换证明该定理,过程很简短,也不要求有太深的数学知识面,下面给出定理的完整证明,首先介绍中心极限定理的定义
中心极限定理:
设随机变量x1,x2,x3…xn相互独立且满足同一分布,则随机变量Ynx1
Yn的分布函数Fn(x)
x2
为了证明该定理设(X,Y)是二维连续随机变量,且X,Y相互独立其分布函数分别为:
x3
则(X,Y)的概率密度函数f(x,y)=g(x)h(y),若随机变量Z=X+Y,则Z的分布函数Fz(u)=P{Z<=u}=P{X+Y<=u}
x4
则Z的概率密度fz(u)为
x5
上式有两点结论:1两个独立连续的随机变量的和的概率密度函数是各自概率密度函数的卷积。2由卷积定理知道,和的概率密度函数的傅立叶变换等于各自概率密度函数的傅立叶变换的乘积。
设a,b为实数则(X+b)/a的分布函数为
x6
其概率密度以及对应的傅立叶变换为
x7
再根据中心极限定理的条件
x8
以及Yn
x9
结合前面所得出的结论得到Yn的概率密度及其傅立叶变换
x10
针对上式扩号中的被积函数进行泰勒分解
x11
当n趋于无穷,根据傅立叶逆变换求Yn的概率密度
x12
又因为
x13
所以得到Yn的概率密度函数
x14
最终得到Yn的分布
x15
上面的证明非常简短,在学习中心极限定理时确实被它震撼到了,它非常的强大。

  • 43
    点赞
  • 142
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
中心极限定理是概率论中的一个重要定理,它描述了独立随机变量之和的分布近似于正态分布的情况。中心极限定理可以应用于很多领域,如统计学、物理学、生物学等。 下面我们将介绍一种常见的证明中心极限定理的方法,即利用特征函数的方法。 设 $X_1,X_2,\cdots,X_n$ 是独立同分布的随机变量,均值为 $\mu$,方差为 $\sigma^2$。令 $S_n=\sum\limits_{i=1}^{n}X_i$,则 $S_n$ 的特征函数为: $$ \phi_{S_n}(t) = \prod_{i=1}^{n}\phi_{X_i}(t) = [\phi_{X_1}(t)]^n $$ 其中 $\phi_{X_i}(t)$ 是 $X_i$ 的特征函数。 由独立同分布的假设,有 $$ \mu_{S_n} = E(S_n) = E(\sum_{i=1}^{n}X_i) = \sum_{i=1}^{n}E(X_i)=n\mu $$ $$ \sigma_{S_n}^2 = Var(S_n) = Var(\sum_{i=1}^{n}X_i) = \sum_{i=1}^{n}Var(X_i) = n\sigma^2 $$ 对于标准正态分布 $Z$,其特征函数为 $\phi_Z(t) = e^{-\frac{t^2}{2}}$。 现在考虑随机变量 $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$,则 $Z_n$ 的特征函数为: $$ \phi_{Z_n}(t) = E(e^{it\frac{S_n - n\mu}{\sigma\sqrt{n}}}) = E(e^{it\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i - \mu)}) $$ 由于 $X_i$ 是独立同分布的,因此 $\sum_{i=1}^{n}(X_i - \mu)$ 的分布可以根据中心极限定理得到近似于正态分布。当 $n$ 足够大时,有: $$ \sum_{i=1}^{n}(X_i - \mu) \approx N(0, n\sigma^2) $$ 因此, $$ \phi_{Z_n}(t) \approx E(e^{it\frac{1}{\sqrt{n}}N(0, n\sigma^2)}) = \phi_Z(t\sigma\sqrt{n}) $$ 这表明当 $n$ 足够大时,$Z_n$ 的分布近似于标准正态分布。因此,中心极限定理得证。 需要注意的是,中心极限定理仅在一定的条件下成立,例如独立同分布的随机变量必须具有有限的均值和方差。此外,证明中心极限定理还可以使用其他方法,例如特征函数的矩母函数逼近法、拉普拉斯变换法等。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值