截断正态分布

概率密度函数

  截断正态分布的定义可以分为两步,给定一个参数为 μ \mu μ σ 2 \sigma^2 σ2的标准正态分布的概率密度函数。修标准般正态分布相关的概率密度函数,通过将范围外的值设置为零,并标准正态的取值范围均匀缩放到特定范围中,使总积分为1。截断范围可以分为四种情况:
(1)无截断的情况: − ∞ = a , b = + ∞ -\infty=a,\quad b=+\infty =a,b=+
(2)下界截断的情况: − ∞ < a , b = + ∞ -\infty<a,\quad b=+\infty <a,b=+
(3)上界截断的情况: − ∞ = a , b < + ∞ -\infty=a,\quad b<+\infty =a,b<+
(4)上下界截断的情况: − ∞ < a , b < + ∞ -\infty<a,\quad b<+\infty <a,b<+

定义1: 截断正态分布概率密度函数 ψ ( μ ˉ , σ ˉ , a , b , ; x ) \psi(\bar{\mu},\bar{\sigma},a,b,;x) ψ(μˉ,σˉ,a,b,;x)的公式为: ψ ( μ ˉ , σ ˉ , a , b , ; x ) = { 0 i f x ≤ a ϕ ( μ ˉ , σ ˉ 2 ; x ) Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) i f a < x < b 0 i f b ≤ x \psi(\bar{\mu},\bar{\sigma},a,b,;x)=\left\{\begin{array}{ll}0 & \mathrm{if} \quad x \le a\\ \frac{\phi(\bar{\mu},\bar{\sigma}^2;x)}{\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}\quad &\mathrm{if}\quad a<x<b\\ 0&\mathrm{if}\quad b \le x \end{array}\right. ψ(μˉ,σˉ,a,b,;x)=0Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a)ϕ(μˉ,σˉ2;x)0ifxaifa<x<bifbx
其中, ϕ ( μ ˉ , σ ˉ 2 ; x ) \phi(\bar{\mu},\bar{\sigma}^2;x) ϕ(μˉ,σˉ2;x)表示的是标准正态分布的概率密度函数, Φ ( μ ˉ , σ ˉ 2 ; x ) \Phi(\bar{\mu},\bar{\sigma}^2;x) Φ(μˉ,σˉ2;x)表示的是标准正态分布的概率分布函数, μ ˉ \bar{\mu} μˉ σ ˉ \bar{\sigma} σˉ表示的是标准正态分布的均值和标准差, a a a b b b表示的是截断正态分布随机变量的取值上下界。

概率分布函数

定义2: 截断正态分布的概率分布函数表示为 Ψ ( μ ˉ , σ ˉ , a , b ; x ) = ∫ a x ψ ( μ ˉ , σ ˉ , a , b ; t ) d t \Psi(\bar{\mu},\bar{\sigma},a,b;x)=\int_a^x\psi(\bar{\mu},\bar{\sigma},a,b;t)dt Ψ(μˉ,σˉ,a,b;x)=axψ(μˉ,σˉ,a,b;t)dt进而则有: Ψ ( μ ˉ , σ ˉ , a , b ; x ) = { 0 i f x ≤ a Φ ( μ ˉ , σ ˉ 2 ; x ) − Φ ( μ ˉ , σ ˉ 2 ; a ) Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) i f a < x < b 1 i f b ≤ x \Psi(\bar{\mu},\bar{\sigma},a,b;x)=\left\{\begin{array}{ll}0& \mathrm{if}\quad x \le a\\ \frac{\Phi(\bar{\mu},\bar{\sigma}^2;x)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}{\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}& \mathrm{if}\quad a <x < b\\ 1& \mathrm{if}\quad b \le x\\ \end{array}\right. Ψ(μˉ,σˉ,a,b;x)=0Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a)Φ(μˉ,σˉ2;x)Φ(μˉ,σˉ2;a)1ifxaifa<x<bifbx

已知截断正态分布的概率密度函数 ψ ( ⋅ ) \psi(\cdot) ψ(),则截断正态分布的概率分布函数的证明过程表示为: Ψ ( μ ˉ , σ ˉ , a , b ; x ) = ∫ − ∞ x ψ ( μ ˉ , σ ˉ , a , b ; t ) d t = ∫ a x ψ ( μ ˉ , σ ˉ , a , b ; t ) d t = ∫ a x ϕ ( μ ˉ , σ ˉ 2 ; t ) Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) d t = ∫ a x ϕ ( μ ˉ , σ ˉ 2 ; t ) d t Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) = Φ ( μ ˉ , σ ˉ 2 ; x ) − Φ ( μ ˉ , σ ˉ 2 ; a ) Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) \begin{aligned}\Psi(\bar{\mu},\bar{\sigma},a,b;x)&=\int_{-\infty}^{x}\psi(\bar{\mu},\bar{\sigma},a,b;t)dt\\&=\int_a^x \psi(\bar{\mu},\bar{\sigma},a,b;t)dt\\&=\int^{x}_a \frac{\phi(\bar{\mu},\bar{\sigma}^2;t)}{\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}dt\\ &= \frac{\int^{x}_a\phi(\bar{\mu},\bar{\sigma}^2;t)dt}{\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}\\&= \frac{\Phi(\bar{\mu},\bar{\sigma}^2;x)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}{\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}\end{aligned} Ψ(μˉ,σˉ,a,b;x)=xψ(μˉ,σˉ,a,b;t)dt=axψ(μˉ,σˉ,a,b;t)dt=axΦ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a)ϕ(μˉ,σˉ2;t)dt=Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a)axϕ(μˉ,σˉ2;t)dt=Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a)Φ(μˉ,σˉ2;x)Φ(μˉ,σˉ2;a)

逆概率分布函数

p = Ψ ( μ ˉ , σ ˉ , a , b ; x ) = Φ ( μ ˉ , σ ˉ 2 ; x ) − Φ ( μ ˉ , σ ˉ 2 ; a ) Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) \begin{aligned}p&=\Psi(\bar{\mu},\bar{\sigma},a,b;x)\\&=\frac{\Phi(\bar{\mu},\bar{\sigma}^2;x)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}{\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a)}\end{aligned} p=Ψ(μˉ,σˉ,a,b;x)=Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a)Φ(μˉ,σˉ2;x)Φ(μˉ,σˉ2;a) Φ ( μ ˉ , σ ˉ 2 ; x ) = Φ ( μ ˉ , σ ˉ 2 ; a ) + p ⋅ ( Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) ) x = Φ − 1 ( μ ˉ , σ 2 ˉ ; Φ ( μ ˉ , σ ˉ 2 ; a ) + p ⋅ ( Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) ) ) \begin{aligned}\Phi(\bar{\mu},\bar{\sigma}^2;x)&=\Phi(\bar{\mu},\bar{\sigma}^2;a)+p\cdot(\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a))\\x &= \Phi^{-1}(\bar{\mu},\bar{\sigma^2};\Phi(\bar{\mu},\bar{\sigma}^2;a)+p\cdot(\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a)))\end{aligned} Φ(μˉ,σˉ2;x)x=Φ(μˉ,σˉ2;a)+p(Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a))=Φ1(μˉ,σ2ˉ;Φ(μˉ,σˉ2;a)+p(Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a))) Ψ ( μ ˉ , σ ˉ 2 , a , b ; p ) = Φ − 1 ( μ ˉ , σ 2 ˉ ; Φ ( μ ˉ , σ ˉ 2 ; a ) + p ⋅ ( Φ ( μ ˉ , σ ˉ 2 ; b ) − Φ ( μ ˉ , σ ˉ 2 ; a ) ) ) \Psi(\bar{\mu},\bar{\sigma}^2,a,b;p)=\Phi^{-1}(\bar{\mu},\bar{\sigma^2};\Phi(\bar{\mu},\bar{\sigma}^2;a)+p\cdot(\Phi(\bar{\mu},\bar{\sigma}^2;b)-\Phi(\bar{\mu},\bar{\sigma}^2;a))) Ψ(μˉ,σˉ2,a,b;p)=Φ1(μˉ,σ2ˉ;Φ(μˉ,σˉ2;a)+p(Φ(μˉ,σˉ2;b)Φ(μˉ,σˉ2;a)))

均值和方差

截断正态分布的均值表示 μ = μ ˉ − σ ˉ ϕ ( 0 , 1 ; β ) − ϕ ( 0 , 1 ; α ) Φ ( 0 , 1 ; β ) − Φ ( 0 , 1 ; α ) \mu=\bar{\mu}-\bar{\sigma}\frac{\phi(0,1;\beta)-\phi(0,1;\alpha)}{\Phi(0,1;\beta)-\Phi(0,1;\alpha)} μ=μˉσˉΦ(0,1;β)Φ(0,1;α)ϕ(0,1;β)ϕ(0,1;α)其中, α = a − μ ˉ σ ˉ \alpha=\frac{a-\bar{\mu}}{\bar{\sigma}} α=σˉaμˉ β = b − μ ˉ σ ˉ \beta=\frac{b-\bar{\mu}}{\bar{\sigma}} β=σˉbμˉ
截断正态分布的方差表示 σ 2 = σ ˉ 2 ⋅ ( 1 − β ϕ ( 0 , 1 ; β ) − α ϕ ( 0 , 1 ; α ) Φ ( 0 , 1 ; β ) − Φ ( 0 , 1 ; α ) − ( ϕ ( 0 , 1 ; β ) − ϕ ( 0 , 1 ; α ) Φ ( 0 , 1 ; β ) − Φ ( 0 , 1 ; α ) ) 2 ) \sigma^2=\bar{\sigma}^2\cdot(1-\frac{\beta\phi(0,1;\beta)-\alpha\phi(0,1;\alpha)}{\Phi(0,1;\beta)-\Phi(0,1;\alpha)}-(\frac{\phi(0,1;\beta)-\phi(0,1;\alpha)}{\Phi(0,1;\beta)-\Phi(0,1;\alpha)})^2) σ2=σˉ2(1Φ(0,1;β)Φ(0,1;α)βϕ(0,1;β)αϕ(0,1;α)(Φ(0,1;β)Φ(0,1;α)ϕ(0,1;β)ϕ(0,1;α))2)

  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值