电磁场与电磁波学习笔记(一)基础


前言

打算做一个电磁场到微波工程的系列笔记


一、概念

1.场的概念:

      每一时刻,一个物理量在空间中的每一点都有一个确定的值

2.场的分类:

      如果这个物理量只有大小没有方向,我们把这种量叫作数量场(标量场)。
      例子:u(x,y,z,t)
      如果这个物理量既有大小又有方向,我们把这种量叫作矢量场。
      例子: A → ( x , y , z , t ) \overrightarrow{A}\left( x,y,z,t\right) A (x,y,z,t)
      如果这个场不随时间变化,我们把这个场叫作稳定场(恒定场)。
      如果这个场随时间变化,我们把这个场叫作时变场。

3.数量场的等值面:

      同一时间,数量场中函数值相同的点所组成的曲面叫作数量场的等值面。
      例子:u=u(M)(u=u(x,y,z))
      数量场中等值面有无数个
      任意两个不同的等值面绝不相交
      画等值面时要求两个等值面之间相差的值相等,目的是为了观察电磁场变化的快慢(如果C3和C2之间的距离大于C2和C1之间的距离,说明在C3和C2之间电磁场变化的速度慢了)

4.矢量场中的矢量线:

      矢量线反映了矢量的方向在空间的变化情况
      矢量的方向与矢量线的切线方向相同
      一个矢量场中有无数多跟矢量线
      任意两根矢量线不可能相交
      矢量变化比较快的地方,矢量线密集

5.数量场中的方向导数:

      函数u在点M0处,沿 l → \overrightarrow{l} l 方向对距离的变化率
       ∂ u ∂ l ∣ M 0 = lim ⁡ Δ l → 0 u ( M ) − u ( M 0 ) Δ l \dfrac{\partial u}{\partial l}| _{M_{0}}=\lim _{\Delta l\rightarrow 0}\dfrac{u\left( M\right) -u\left( M_{0}\right) }{\Delta l} luM0=limΔl0Δlu(M)u(M0)
      全增量用全微分表示
       ∂ u ∂ l ∣ M 0 = ∂ u ∂ x cos ⁡ α + ∂ u ∂ y cos ⁡ β + ∂ x 0 z cos ⁡ γ \begin{aligned} \dfrac{\partial u}{\partial l}| _{M_{0}}=\dfrac{\partial u}{\partial x}\cos \alpha +\dfrac{\partial u}{\partial y}\cos\beta+\dfrac{\partial x}{0z}\cos \gamma \end{aligned} luM0=xucosα+yucosβ+0zxcosγ
       l ‾ = cos ⁡ α e → x + cos ⁡ β e y → + cos ⁡ γ e → z \overline{l}=\cos \alpha \overrightarrow{e}_{x}+\cos \beta \overrightarrow{e_{y}}+\cos \gamma \overrightarrow{e}_{z} l=cosαe x+cosβey +cosγe z

6.数量场中梯度

      梯度的方向是沿场量变化最大的方向
       ∂ u ∂ l = g r a d u ⋅ l → \dfrac{\partial u}{\partial l}=gradu\cdot \overrightarrow{l} lu=gradul
       g r a d u = ∂ u ∂ x e → x + ∂ u ∂ y e → y + ∂ u ∂ z E z grad u=\dfrac{\partial u}{\partial x}\overrightarrow{e}_{x}+\dfrac{\partial u}{\partial y}\overrightarrow{e}_{y}+\dfrac{\partial u}{\partial z}E_{z} gradu=xue x+yue y+zuEz
      方向导数为梯度在 l → \overrightarrow{l} l 方向的投影
      等值面上一点的最大变换方向是它的法线方向;切线方向变化为0

7.哈密顿算子

       ∇ = ∂ ∂ x e → x + ∂ ∂ y e → y + ∂ ∂ z e → z \nabla =\dfrac{\partial }{\partial x}\overrightarrow{e}_{x}+\dfrac{\partial }{\partial y}\overrightarrow{e}_{y}+\dfrac{\partial }{\partial z}\overrightarrow{e}_{z} =xe x+ye y+ze z
      同时具有矢量性与微分性,首先作用的是矢量性

8.矢量场中的通量

       Φ = ∮ s A → ⋅ d S → \Phi =\oint_{s} \overrightarrow{A}\cdot d\overrightarrow{S} Φ=sA dS
      通量代表从闭合面内部穿出它的通量与外部进入的通量的代数和。
       Φ > 0 \Phi >0 Φ>0:穿出大于穿入,里面有正源
       Φ < 0 \Phi <0 Φ<0:穿入大于穿出,里面有负源
      我们只是知道了这个曲面的整体情况,但不知道正源有多少,负源有多少

9.矢量场中的散度

       d i v A → = lim ⁡ Δ V → 0 ∮ s A → ⋅ d S → Δ V div\overrightarrow{A}=\lim _{\Delta V\rightarrow 0}\dfrac{\oint _{s}\overrightarrow{A}\cdot d\overrightarrow{S}}{\Delta V} divA =limΔV0ΔVsA dS
       A → ( x , y , z ) = A x e x → + A y e y → + A z e z → \overrightarrow{A}\left( x,y,z\right)=A_{x}\overrightarrow{e_{x}}+A_{y}\overrightarrow{e_{y}}+A_{z}\overrightarrow{e_{z}} A (x,y,z)=Axex +Ayey +Azez

       d i v A → = ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z div\overrightarrow{A}=\dfrac{\partial A_{x}}{\partial x}+\dfrac{\partial A_{y}}{\partial y}+\dfrac{\partial A_{z}}{\partial z} divA =xAx+yAy+zAz
       d i v A → = ∇ ⋅ A → div\overrightarrow{A}=\nabla \cdot \overrightarrow{A} divA =A
      散度反应了某一点领域的单位体积里面源分布的情况。
      散度大于零,矢量线从该点发出;散度小于零,矢量线在该点截止;散度等于零,矢量线平滑穿过该点
      例子:
       ∇ ⋅ J → \nabla \cdot \overrightarrow{J} J 表示由一点流出的电流

10.矢量场中的环量

       Q = ∮ L A → ⋅ d l → Q=\oint _{L}\overrightarrow{A}\cdot d\overrightarrow{l} Q=LA dl
      其中 l → \overrightarrow{l} l 为有向闭合曲线
      如果我们在某一点的邻域沿某一个环路对这个矢量进行积分,如果这个积分不为0,则初步判断有漩涡,但不知道漩涡的轴在哪

11.矢量场中的环量密度

       q = lim ⁡ Δ s → 0 ∮ L A → ⋅ d l → Δ S q=\lim _{\Delta s\rightarrow 0}\dfrac{\oint _{L}\overrightarrow{A}\cdot d\overrightarrow{l}}{\Delta S} q=limΔs0ΔSLA dl

       q = ( ∂ A z ∂ y − ∂ A y ∂ z ) cos ⁡ α + ( ∂ A x ∂ z − ∂ A z ∂ x ) cos ⁡ β + ( ∂ A y ∂ x − ∂ A x ∂ y ) cos ⁡ γ \begin{aligned}q=\left( \dfrac{\partial A_{z}}{\partial y}-\dfrac{\partial A_{y}}{\partial z}\right) \cos \alpha + \left( \dfrac{\partial A_{x}}{\partial z}-\dfrac{\partial A_{z}}{\partial x}\right) \cos \beta +\left( \dfrac{\partial A_{y}}{\partial x}-\dfrac{\partial A_{x}}{\partial y}\right) \cos \gamma \end{aligned} q=(yAzzAy)cosα+(zAxxAz)cosβ+(xAyyAx)cosγ

12.矢量场中的旋度

       q = r o t A → ⋅ n → q=rot\overrightarrow{A}\cdot \overrightarrow{n} q=rotA n
       n ‾ = cos ⁡ α e → x + cos ⁡ β e y → + cos ⁡ γ e → z \overline{n}=\cos \alpha \overrightarrow{e}_{x}+\cos \beta \overrightarrow{e_{y}}+\cos \gamma \overrightarrow{e}_{z} n=cosαe x+cosβey +cosγe z
       r o t A → = ∇ × A → rot\overrightarrow{A}=\nabla \times \overrightarrow{A} rotA =×A
       r o t A → = ∣ e → x e y → e → z ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ rot\overrightarrow{A}=\begin{vmatrix} \overrightarrow{e}_{x} & \overrightarrow{e_{y}} & \overrightarrow{e}_{z} \\ \dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial }{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix} rotA = e xxAxey yAye zzAz
旋度的方向就是这一点环量密度最大的方向,也就是垂直于环路的法线的方向(轴)

二、重要公式

∇ ⋅ ( A → × B → ) = B → ⋅ ∇ × A → − A → ⋅ ∇ × B ‾ \nabla \cdot \left( \overrightarrow{A}\times \overrightarrow{B}\right) =\overrightarrow{B}\cdot \nabla \times \overrightarrow{A}-\overrightarrow{A}\cdot \nabla \times \overline{B} (A ×B )=B ×A A ×B
∇ × ( u A → ) = u ∇ × A → + ∇ u × A → \nabla \times \left( u\overrightarrow{A}\right) =u\nabla \times \overrightarrow{A}+\nabla u\times \overrightarrow{A} ×(uA )=u×A +u×A
∇ × ( ∇ u ) ≡ 0 \nabla \times \left( \nabla u\right) \equiv 0 ×(u)0
∇ ⋅ ( ∇ × A → ) ≡ 0 \nabla \cdot \left( \nabla \times \overrightarrow{A}\right) \equiv 0 (×A )0
∇ ⋅ ( ∇ υ ) = ∇ 2 u \nabla \cdot \left( \nabla \upsilon \right) =\nabla ^{2}u (υ)=2u拉普拉斯算子
∇ 2 u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 \nabla ^{2}u=\dfrac{\partial ^{2}u}{\partial x^{2}}+\dfrac{\partial ^{2}u}{\partial y^{2}}+\dfrac{\partial ^{2}u}{\partial z^{2}} 2u=x22u+y22u+z22u
在源分布的区域,对待求的函数求拉普拉斯算子,若拉普拉斯算子不等于0,表示有源存在
∇ × ( ∇ × A → ) = ∇ ⋅ ( ∇ ⋅ A → ) − ∇ 2 A → \nabla \times \left( \nabla \times \overrightarrow{A}\right) =\nabla \cdot \left( \nabla \cdot \overrightarrow{A}\right) -\nabla ^{2}\overrightarrow{A} ×(×A )=(A )2A 矢量的拉普拉斯算子

三、亥姆霍兹定理

在有限的区域V内,任一矢量场由它的散度,旋度和边界条件唯一地确定

四、笔记源自马西奎老师的课程

  • 13
    点赞
  • 77
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值