剑指 Offer 47. 礼物的最大价值

该博客介绍了一个使用动态规划解决的经典问题——在棋盘上从左上角到右下角路径中获取最大价值的礼物。通过分析题目,确定了动态规划的转移方程并提供了两种实现方式,包括常规的二维矩阵dp和优化后的空间复杂度解决方案。讨论了时间复杂度和空间复杂度,展示了如何在实际编程中优化算法。
摘要由CSDN通过智能技术生成

题目

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

解题思路:

题目说明:从棋盘的左上角开始拿格子里的礼物,并每次 向右 或者 向下 移动一格、直到到达棋盘的右下角。
根据题目说明,易得某单元格只可能从上边单元格或左边单元格到达。
可用动态规划解决此问题,转移方程如下
f(i,j)=max[f(i,j−1),f(i−1,j)]+grid(i,j)

设动态规划矩阵 dp,dp(i,j)代表从棋盘的左上角开始,到达单元格 (i,j) 时能拿到礼物的最大累计价值。
转移方程:
当 i = 0且 j = 0时,为起始元素;
当 i = 0且 j不等于0 时,为矩阵第一行元素,只可从左边到达;
当 i 不等于0 且 j = 0时,为矩阵第一列元素,只可从上边到达;
当 i 不等于0 且 j不等于0 时,可从左边或上边到达

初始状态: dp[0][0] = grid[0][0]
返回值: dp[m-1][n-1]m, n分别为矩阵的行高和列宽

public int maxValue(int[][] grid) {
        int m=grid.length;
        int n=grid[0].length;
        int[][] dp=new int[m][n];
        dp[0][0]=grid[0][0];
        for(int i=1;i<n;i++){
            dp[0][i]=dp[0][i-1]+grid[0][i];
        }
        for(int j=1;j<m;j++){
            dp[j][0]=dp[j-1][0]+grid[j][0];
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        return dp[m-1][n-1];
    }

官方思路

官方答案将原矩阵 grid 用作 dp 矩阵,即直接在 grid上修改,因此空间复杂度从 O(MN)降至 O(1)
时间复杂度 O(MN) : M, N 分别为矩阵行高、列宽;动态规划需遍历整个 grid 矩阵,使用 O(MN)时间。

其他思路

多开一行一列的空间能够让代码更简洁,牺牲内存,解决了边界值问题

public int maxValue(int[][] grid) {
        int row = grid.length;
        int column = grid[0].length;
        //dp[i][j]表示从grid[0][0]到grid[i - 1][j - 1]时的最大价值
        int[][] dp = new int[row + 1][column + 1];
        for (int i = 1; i <= row; i++) {
            for (int j = 1; j <= column; j++) {
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
            }
        }
        return dp[row][column];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值