BUG: 30系显卡tensorflow1.15 failed to run cuBLAS routine cublasSgemm_v2: CUBLAS_STATUS_EXECUTION_FAILED

作者在尝试在3090ti显卡上运行tensorflow1.15时遇到错误,由于之前为2080ti显卡安装了CUDA10.0,而在30系显卡上CUDA10.0不兼容导致问题。实际上,tensorflow1.15可以与CUDA11.4配合使用,单独安装CUDA10.0是不必要的。若在CUDA11.4上遇到问题,作者建议参考其他资源解决。
部署运行你感兴趣的模型镜像

BUG: 30系显卡tensorflow1.15 failed to run cuBLAS routine cublasSgemm_v2: CUBLAS_STATUS_EXECUTION_FAILED

系统情况

linux
3090ti 显卡
系统默认装了CUDA 11.4

原因与解决

因为我以前使用2080ti显卡,按照tensorflow官网要求1.15版本需要CUDA 10.0,然后我单独在当前python环境使用conda 安装了cuda 10.0 版本, 在2080ti这样做是没有问题的。

但我不知道英伟达30系已经不支持 10.0 版本的CUDA。导致模型代码运行失败弹出这个异常。

经过测试,tensorflow1.15 可以直接在CUDA 11.4版本运行的,我是直接通过下面命令安装即可在GPU(CUDA 11.4)运行。

安装命令

# gpu版
pip install tensorflow-gpu==1.15

所以我单独安装CUDA10.0是白费功夫了。。。
注:如果大家遇到在CUDA 11.4不能运行,我也不知道怎么办,请参考其他人的文章。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值