Tr A
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5536 Accepted Submission(s): 4160
Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
Sample Output
2 2686
#include<cstdio>
#include<cstring>
const int maxn = 15;
#define mod 9973
int t, n, k;
struct MT
{
int m[maxn][maxn];
};
MT Mul(MT a, MT b)
{
MT res;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
res.m[i][j]=0;
for(int k = 0; k < n; k++)
{
res.m[i][j] += a.m[i][k]*b.m[k][j] % mod;
}
res.m[i][j] %= mod;
}
}
return res;
}
MT Product(MT a, int k)
{
MT ans;
memset(ans.m, 0, sizeof(ans.m));
for(int i = 0; i < n; i++) //初始化
{
ans.m[i][i] = 1;
}
while(k>0)
{
if(k % 2 == 1)
ans = Mul(ans, a);
k /= 2;
a = Mul(a, a);
}
return ans;
}
int main()
{
MT a;
scanf("%d", &t);
while(t--)
{
scanf("%d %d", &n, &k);
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
scanf("%d", &a.m[i][j]);
}
}
MT b = Product(a, k);
int sum = 0;
for(int i = 0; i < n; i++)
sum += b.m[i][i]%mod;
printf("%d\n", sum % mod);
}
return 0;
}