HDU1575 Tr A【矩阵快速幂】


Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5536    Accepted Submission(s): 4160


Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
 

Output
对应每组数据,输出Tr(A^k)%9973。
 

Sample Input
  
  
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
 

Sample Output
  
  
2 2686

#include<cstdio>
#include<cstring>
const int maxn = 15;
#define mod 9973
int t, n, k;

struct MT
{
    int m[maxn][maxn];
};

MT Mul(MT a, MT b)
{
    MT res;
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
        	res.m[i][j]=0;
            for(int k = 0; k < n; k++)
            {
                res.m[i][j] += a.m[i][k]*b.m[k][j] % mod;
            }
            res.m[i][j] %= mod;
        }
    }
    return res;
}

MT Product(MT a, int k)
{
    MT ans;
    memset(ans.m, 0, sizeof(ans.m));
    for(int i = 0; i < n; i++)	//初始化 
    {
        ans.m[i][i] = 1;
    }

    while(k>0)
    {
        if(k % 2 == 1) 
		ans = Mul(ans, a);
        k /= 2;
        a = Mul(a, a);
    }
    return ans;
}

int main()
{
    MT a;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d %d", &n, &k);
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                scanf("%d", &a.m[i][j]);
            }
        }

        MT b = Product(a, k);
        
        int sum = 0;
        for(int i = 0; i < n; i++)
            sum += b.m[i][i]%mod;
        printf("%d\n", sum % mod);
    }
    return 0;
}









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值