深度学习以及机器学习中都会用到SoftMax函数,交叉熵损失函数与熵,对数似然函数等一些数学方面的知识,此文作为个人学习笔记。
1.softmax函数
(1)定义
多分类问题中,我们可以使用SoftMax函数,对输出的值归一化为概率值,映射到(0,1)区间。
这里假设在进入softmax
函数之前,已经有模型输出C值,其中C是要预测的类别数,模型可以是全连接网络的输出a,其输出个数为C,即输出为a1,a2,...,aC。
所以对每个样本,它属于类别ii的概率为:
经过上式的运算之后,yi被归一化到了[0,1]区间,并且所有类别的yi之和为1.
(2)导数
对softmax函数进行求导,其中aj(j=1,2,..i,...C)是自变量,yi是因变量。实际上所求取的应当是yi对aj的偏导: