SoftMax函数,交叉熵损失函数与熵,对数似然函数

深度学习以及机器学习中都会用到SoftMax函数,交叉熵损失函数与熵,对数似然函数等一些数学方面的知识,此文作为个人学习笔记。

1.softmax函数

(1)定义

多分类问题中,我们可以使用SoftMax函数,对输出的值归一化为概率值,映射到(0,1)区间。

这里假设在进入softmax函数之前,已经有模型输出C值,其中C是要预测的类别数,模型可以是全连接网络的输出a,其输出个数为C,即输出为a1,a2,...,aC。

所以对每个样本,它属于类别ii的概率为: 

y_{i}=e^{a^{i}}/\sum_{k=1}^{C}e^{a^{k}},\forall i=1,2,...,C

经过上式的运算之后,yi被归一化到了[0,1]区间,并且所有类别的yi之和为1.

(2)导数

对softmax函数进行求导,其中aj(j=1,2,..i,...C)是自变量,yi是因变量。实际上所求取的应当是yi对aj的偏导:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值