【题目描述】:
地面上从左到右并排紧挨着摆放多个矩形,已知这此矩形的底边宽度都为1,高度不完全相等。求在这些矩形包括的范围内能得到的面积最大的矩形,打印出该面积。所求矩形可以横跨多个矩形,但不能超出原有矩形所确定的范围。
如 n = 7, 序列为2 1 4 5 1 3 3
_ _
_ | | _ | |
| || | _ _ |H||H| _ _
_ | || | | || | _ |H||H| | || |
| | _ | || | _ | || | | | _ |H||H| _ | || |
|||||||||||||| |||||H||H|||||||
最大面积:8
【输入描述】:
输入有多组数据,每组数据一行:
第一个数N,表示矩形个数
后面跟N个正整数,第i个正整数hi表示第i个矩形的高度。
最后一行,以一个单独的0结束。
【输出描述】:
每组输入数据一行,一个数表示最大矩形面积。
【样例输入】:
7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0
【样例输出】:
8
4000
【时间限制、数据范围及描述】:
时间:1s 空间:64M
30 %: 1<=N<=100
60 %: 1<=N<=1,000
100%: 1<=N<=500,000,0<=hi<=1,000,000,000
【AC代码】:
#include<bits/stdc++.h>
#define M(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define Mod 100003
using namespace std;
inline void read(int &x){
char ch=getchar(),c=ch;
x=0;
while(ch<'0' || ch>'9'){
c=ch;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
if(c=='-')x=-x;
}
stack<int> st;
int i,j,k,m,n;
int h[500005],L[500005],R[500005];
int main(){
while(scanf("%d",&n)==1 && n){
M(h,0);
for(i=1;i<=n;i++)read(h[i]);
h[n+1]=0;
st.push(0);
for(i=1; i<=n+1; i++){
while(h[st.top()]>h[i]){
R[st.top()]=i;
st.pop();
}
L[i]=st.top();
st.push(i);
}
long long ans=0;
for(i=1;i<=n;i++)ans=max(ans,1LL*(R[i]-L[i]-1)*h[i]);
printf("%lld\n",ans);
}
return 0;
}