题目描述
曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。
阳光大学的校园是一张由N个点构成的无向图,N个点之间由M条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在与这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。
询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。
输入格式
第一行:两个整数N,M
接下来M行:每行两个整数A,B,表示点A到点B之间有道路相连。
输出格式
仅一行:如果河蟹无法封锁所有道路,则输出“Impossible”,否则输出一个整数,表示最少需要多少只河蟹。
输入输出样例
输入 #1
3 3
1 2
1 3
2 3
输出 #1
Impossible
输入 #2
3 2
1 2
2 3
输出 #2
1
【数据规模】
1<=N<=10000,1<=M<=100000,任意两点之间最多有一条道路。
【解题思路】:
基本思路就是遍历图然后进行染色。
1、我们采用黑白点染色的方法,如果一个点已经被染为黑色,那么和他相邻的点一定要被染成白色,最后答案取数量更少的颜色,这里用sum数组来计算两种颜色的数量
2、impossible:如果一个点已经被遍历过(用vis数组标记),即已经染过色(用col数组记录),但是他已经被染过的颜色和接下来要染得颜色不同,即说明出现了两种颜色相同的点要相邻,那么就是不能封锁
【AC代码】:
#include <bits/stdc++.h>
#define M(a, b) memset(a, b, sizeof(a))
#define INF 0x3f3f3f3f
#define MOD 10000007
using namespace std;
inline void read(int &x){
char ch=getchar(),c=ch;
x=0;
while(ch<'0' || ch>'9'){
c=ch;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
if(c=='-')x=-x;
}
struct Node{
int v,next;
}edge[400005];
int head[200005],cnt=0;
void add(int u,int v){
edge[++cnt].next=head[u];
head[u]=cnt;
edge[cnt].v=v;
}
int n,m,i,ans=0;
int col[200005],vis[200005],sum[2];
void dfs(int x,int d){
vis[x]=1;
sum[d]++;
col[x]=d;
for(int i=head[x];i;i=edge[i].next){
int v=edge[i].v;
if(vis[v]){
if(col[v]==1-d)continue;
else{
printf("Impossible");
exit(0);
}
}
else dfs(v,1-d);
}
}
int main(){
read(n),read(m);
int u,v;
for(i=1;i<=m;i++){
read(u),read(v);
add(u,v);
add(v,u);
}
for(i=1;i<=n;i++){
sum[0]=sum[1]=0;
if(!vis[i])dfs(i,0);
ans+=min(sum[0],sum[1]);
}
printf("%d\n",ans);
return 0;
}