【leetcode】59. 斐波那契数


斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

1. 递归
class Solution(object):
    def fib(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n <= 1:
            return n
        elif n >= 2:
            return self.fib(n-1) + self.fib(n-2)
        
2. 动态规划数组
class Solution(object):
    def fib(self, n):
        """
        :type n: int
        :rtype: int
        """
        # DP数组
        if n <= 1:
            return n
        dp = [0] * (n+1)
        dp[0] = 0
        dp[1] = 1
        for i in range(2, n+1):
            dp[i] = dp[i-1] + dp[i-2]
        return dp[n]

为什么数组大小是 n + 1
动态规划数组 dp 的定义通常是:

dp[i] 表示第 i 个斐波那契数的值(这里常从 i=0 开始)

因为需要存储从0到第 n 项的值,一共需要存储 n + 1 个元素:

下标从 0 到 n

总共是 n - 0 + 1 = n + 1 个元素

例如,要计算 第 n 个斐波那契数,我们需要 dp[0], dp[1], dp[2], ..., dp[n]

3. 动态规划优化
class Solution(object):
    def fib(self, n):
        """
        :type n: int
        :rtype: int
        """
        # 优化
        if n <= 1:
            return n
        a = 0
        b = 1
        for _ in range(2, n+1):
            a, b = b, a + b
        return b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值