我先简单的说一下Spark streaming,然后在想对比的说一下Structured Streaming
Spark streaming的概述
- Spark Streaming是一个基于Spark Core之上的实时计算框架,可以从很多数据源消费数据并对数据进行实时的处理
- Spark Streaming类似于Apache Storm,用于流式数据的处理。
- 根据其官方文档介绍,Spark Streaming有高吞吐量和容错能力强等特点。
- Spark Streaming支持的数据输入源很多,例如:Kafka、Flume、Twitter、ZeroMQ和简单的TCP套接字等等。
- 数据输入后可以用Spark的高度抽象操作如:map、reduce、join、window等进行运算。而结果也能保存在很多地方,如HDFS,数据库等。

本文首先介绍了Spark Streaming的基本概念、工作原理和数据抽象DStream。接着,讲述了Structured Streaming的发展,指出它作为Spark 2.0之后的核心API,解决了Spark Streaming在延迟和复杂场景处理上的局限。文中强调了Dataflow模型的重要性,该模型允许基于事件时间的窗口计算,提供更灵活的数据处理方式。
最低0.47元/天 解锁文章
4467

被折叠的 条评论
为什么被折叠?



