acwing 1291. 轻拍牛头

题目链接

acwing 1291. 轻拍牛头

思路

如果直接用暴力解法,逐个判断其他的数是不是它的约数,这样时间复杂度是 O ( n 2 ) O(n^2) O(n2),数据规模是 1 0 5 10^5 105,会超时

假设 A 1 A_1 A1 A 2 A_2 A2的约数的话,那么 A 2 A_2 A2就是 A 1 A_1 A1的倍数,因此可以做这么一个处理,当判定某个数 A k A_k Ak时,我们可以把这个数字的倍数 A m A_m Am全部加1,含义是, A m A_m Am的约数个数又多了1

但又考虑到可能会有很多个 A k A_k Ak的值是相同的,所以类似于计数排序的思想,先统计 A k A_k Ak出现的次数,然后再做上面的操作会方便一些

统计a[i]出现的次数:

   for(int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
        cnt[a[i]]++;
    }

cnt[i] != 0,即有某个 A k A_k Ak出现了,把 A k A_k Ak的倍数j加上 A k A_k Ak出现的次数,即j的约数又多了 c n t [ A k ] cnt[A_k] cnt[Ak]

    for(int i = 1; i < N; i++) {
        if(!cnt[i]) continue;
        //i其实就是Ak,j就是i的倍数
        for(int j = i; j < N; j += i) {
            res[j] += cnt[i];
        }
    }

最后,要在所有数中求 A k A_k Ak约数个数, r e s [ A k ] res[A_k] res[Ak]就是 A k A_k Ak约数的个数(包括 A k A_k Ak自己)。可以想象,假设 A k = 4 A_k = 4 Ak=4,它在所有数中有两个约数 A 1 = A 2 = 2 A_1 = A_2 = 2 A1=A2=2,经过上述操作后, r e s [ 4 ] res[4] res[4]的值应该是3,所以 A k A_k Ak的约数个数是 r e s [ A k ] − 1 = 3 − 1 = 2 res[A_k] - 1 = 3 - 1 = 2 res[Ak]1=31=2

总结

约数和倍数其实是一对好基友,当求约数的时间复杂度过大时,不妨从它倍数的角度来考虑解决问题

代码

#include<iostream>
using namespace std;

const int N = 1e6 + 10, M = 1e5 + 10;
int cnt[N], a[M], res[N];
int n;

int main() {
    scanf("%d", &n);
    for(int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
        cnt[a[i]]++;
    }
    
    for(int i = 1; i < N; i++) {
        if(!cnt[i]) continue;
        for(int j = i; j < N; j += i) {
            res[j] += cnt[i];
        }
    }
    for(int i = 0; i < n; i++) printf("%d\n", res[a[i]] - 1);
    
    return 0;
    
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页