向后传播(Backpropagation)是一种在神经网络中用于计算损失函数相对于每个权重的梯度的算法。简单来说,向后传播是一种有效的学习机制,它允许神经网络通过调整连接权重来改进其预测。
在神经网络中,数据从输入层流向隐藏层,最后到达输出层。这个过程称为前向传播(Forward Propagation)。在前向传播过程中,网络会生成一个输出,这个输出与实际值之间的差异会通过一个损失函数来衡量。损失函数的值越小,表示网络的预测越准确。
然而,仅仅知道损失函数的值还不足以指导网络如何调整权重。我们需要知道每个权重对损失函数的贡献,即损失函数对每个权重的梯度。这就是向后传播发挥作用的地方。
向后传播的工作原理可以概括为以下几个步骤:
-
计算输出误差:首先计算输出层的误差,这通常是实际输出和期望输出之间的差异,通过损失函数来衡量。
-
传播误差:然后,这个误差会通过网络向后传播,每个隐藏层都会根据其前一层和后一层的误差来计算自己的误差。
-
计算梯度:在误差传播的同时,计算损失函数对每个权重的梯度。这些梯度表明了权重需要如何调整以减少损失函数的值。
-
更新权重:最后,使用这些梯度来更新网络的权重。这个过程通常涉及到一个称为优化器的算法,如梯度下降(Gradient Descent),它会根据梯度来调整权重。
通过这种方式,神经网络可以逐步学习如何更准确地预测输出,这整个过程就是通过向后传播算法来实现的。简单来说,向后传播是一种让神经网络从错误中学习并改进其预测的方法。