题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明: m 和 n 的值均不超过 100。
示例1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例2:
输入: m = 7, n = 3
输出: 28
我的思路
- 又是一道看似递归能解决的问题。
- 于是乎就自信地写下了简短的几行:
class Solution {
public:
int uniquePaths(int m, int n) {
if(m == 1 && n == 1) return 1;
if(m < 1 || n < 1) return 0;
return uniquePaths(m - 1, n) + uniquePaths(m, n - 1);
}
};
- 然后BOOM!炸了。原因和递归版的斐波那契数列一样,都是重复计算过多,指数级的增长。
- 既然递归不行,就自然想到动态规划,我们可以建立一个数组,自底向上分别填入数字,比如示例一 7*3 的版本:
| 28 | 21 | 15 | 10 | 3 | 1 |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | - 最后计算出来的 28 自然就是结果了。
- 典型的动态规划思路,利用数组来记录计算过的运算,避免了过多的重复运算(递归的弊端),时间复杂度 O(n*m)。
- 数组构造过程转换成代码如下:
class Solution {
int num[101][101];
public:
int uniquePaths(int m, int n) {
if(m == 1 && n == 1) return 1;
if(m < 1 || n < 1) return 0;
for(int i = n-1; i >= 0; --i){
for(int j = m-1; j >= 0; --j){
if(j == m-1 && i == n-1) num[i][j] = 1; //先将终点位置初始化 1
else num[i][j] = num[i+1][j] + num[i][j+1];
}
}
return num[0][0];
}
};