LeetCode - 不同路径

题目链接:https://leetcode-cn.com/problems/unique-paths/

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?
robot
例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明: m 和 n 的值均不超过 100。

示例1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例2:

输入: m = 7, n = 3
输出: 28

我的思路

  • 又是一道看似递归能解决的问题。
  • 于是乎就自信地写下了简短的几行:
class Solution {
public:
   int uniquePaths(int m, int n) {
       if(m == 1 && n == 1) return 1;
       if(m < 1 || n < 1) return 0;
       return uniquePaths(m - 1, n) + uniquePaths(m, n - 1);
   }
};
  • 然后BOOM!炸了。原因和递归版的斐波那契数列一样,都是重复计算过多,指数级的增长。
  • 既然递归不行,就自然想到动态规划,我们可以建立一个数组,自底向上分别填入数字,比如示例一 7*3 的版本:
    | 28 | 21 | 15 | 10 | 3 | 1 |
    | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
    | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
  • 最后计算出来的 28 自然就是结果了。
  • 典型的动态规划思路,利用数组来记录计算过的运算,避免了过多的重复运算(递归的弊端),时间复杂度 O(n*m)。
  • 数组构造过程转换成代码如下:
class Solution {
    int num[101][101];
public:
    int uniquePaths(int m, int n) {
        if(m == 1 && n == 1) return 1;
        if(m < 1 || n < 1) return 0;
        for(int i = n-1; i >= 0; --i){
            for(int j = m-1; j >= 0; --j){
                if(j == m-1 && i == n-1) num[i][j] = 1;		//先将终点位置初始化 1
                else num[i][j] = num[i+1][j] + num[i][j+1];
            }
        }
        return num[0][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值