一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
class Solution {
public int uniquePaths(int m, int n) {
int [][] dp=new int [m][n]; // 代表横坐标m纵坐标n 上的方法数
if(m<=1||n<=1)
return 1;
dp[1][0]=1;
dp[0][1]=1;
for(int i=0;i<m;i++)
for(int j=0;j<n;j++){
if(i==0&&j>1) //排除边界情况 这是第一列
dp[i][j]=dp[i][j-1];
if(j==0&&i>1) //排除边界情况 这是第一行
dp[i][j]=dp[i-1][j];
if(i>=1&&j>=1){
dp[i][j]=dp[i-1][j]+dp[i][j-1]; //不是边界情况下 方法数等于上面加左边一步的方法数
}
}
return dp[m-1][n-1];
}
}