动态多目标的基础测试问题Dynamic Multobjective Optimization Problems :Test Cases ,Approximations,and Applications

本文关注动态多目标优化问题,提出了五个动态测试问题,包括连续和离散搜索空间,旨在测试算法在目标、约束变化时追踪pareto最优解的能力。动态测试问题分为四种类型,涉及不同层面的POF和POS变化。文章还讨论了动态优化在自适应控制系统中的应用,提出了一个基础算法,并展示了如何从静态测试问题派生动态问题。
摘要由CSDN通过智能技术生成

FDA测试问题的产生

Dynamic Multobjective Optimization Problems :Test Cases ,Approximations,and Applications

摘要:

​ EMO算法在静态多目标优化问题中表现高效,故而人们希望让其追踪动态多目标问题的多个变化的PS和PF。为此,本文提出了五个测试问题并且提出了一个基础的算法。在追踪动态的PF和PS时由于情况各异,出现了几种不同的模式类型。本文主要按测试问题的不同类型介绍和构造一系列测试问题,并在提出的算法上测试这些问题。

Introduction 引言

​ EMO方法试图在每次仿真运行时找到尽可能接近真实POF且分布比较广泛的pareto解集,这些方式不仅呈现出真实POF的边界(最优和最差解),而且呈现出前沿的形状,甚至那些拐点的存在。尽管EMO前景不错,在解决动态多目标问题上却仍然少有人问津,因而本文就是针对该问题并且提出一些包括连续和离散的动态多目标测试问题,还提出一个解决这类问题的基础算法。

​ EMO的相关文献资料显示,在收敛到POF时一个EMO算法很可能因为一系列的测试问题不同而产生各种各样的难点。这些问题都要求一个静态的优化过程,任务就是找到一些列的决策变量并且优化静态的目标函数值。但现实世界中总有一些需求是优化动态多目标问题,也就是说目标函数、约束或者相关的问题参数都有可能随着时间(优化过程的代数)而变化。在解决这类问题时,目前还没有很多EMO算法存在,并且也缺乏能够充分测试动态多目标算法DEMO的测试问题。

​ 除了提出测试问题之外,本文还讨论时变系统的自适应控制问题,这是由于系统的属性是随时间变化 故而优化控制器也是随时间变化的。此外我们还为动态优化控制设计了多个目标,还给出最终的动态多目标优化问题一个公式。控制器的优化设计是进化计算和进化多目标优化应用的经典领域。一旦确保闭环稳定性,就可以考虑提高性能的一些卡标准,比如最大化过渡到最小化,稳定时间最小化和上升时间最小化,以便设计稳定而强大的控制器。

​ 遗传算法常常用于解决动态单目标问题,由于要折衷收敛性和分布性需要对这些操作进行大幅调整,以确保快速响应随时间变化的变化。重心一般在第二个特征上,因此算法能够快速响应时间的变化。此外其他几个解决动态优化过程的策略也都在文献中提及,一个比较有前景的方法似乎是利用人工生命(A-life)范式,并将其与进化计算结合起来。当考虑动态多目标优化时,文献中很少进行研究,并且仍然缺少完整的问题表述以及一系列适当的测试问题。在本文中,我们尝试填补这一空白并提出一个包含五个问题的测试集,用于在问题发生变化时测试跟踪pareto最优集(POS)的各个方面。

Problem Definition 问题定义

​ 普遍的观点认为以下参数化的动态多目标优化问题可以用来表示任何一个动态优化控制问题。

定义1

{ min ⁡ v o ∈ V O f = { f 1 ( V O , V F ) , ⋯   , f M ( V O , V F ) } s . t . g ( V O , V F ) ≤ 0 , h ( V O , V F ) = 0 \left\{ \begin{array}{c} \min\limits_{v_o \in V_O}f=\{f_1(V_O,V_F),\cdots,f_M(V_O,V_F)\}\\ s.t.g(V_O,V_F)\leq0,h(V_O,V_F)=0 \end{array}\right. { voVOminf={ f1(VO,VF),,fM(VO,VF)}s.t.g(VO,VF)0,h(VO,VF)=0

在该定义中, v O v_O vO这些变量可用于优化,而另一些参数 v F v_F vF则与优化变量无关。目标函数和优化均取决于参数,且都可以是非线性的。接下来的定义2是定义1的一个特例,只考虑唯一的参数t。

定义2

{ min ⁡ v ∈ V f = { f 1 ( v , t ) , ⋯   , f M ( v , t ) } s . t . g ( v , t ) ≤ 0 , h ( v , t ) = 0 \left\{\begin{array}{c} \min\limits_{v \in V}f=\{f_1(v,t),\cdots,f_M(v,t)\} \\ s.t.g(v,t)\leq0,h(v,t)=0 \end{array}\right. { vVminf={ f1(v,t),,fM(v,t)}s.t.g(v,t)0,h(v,t)=0

定义3

S P ( t ) S_P(t) SP(t):决策空间内,t时刻的pareto最优解集

F P ( t ) F_P(t) FP(t):目标空间内,t时刻的pareto最优解集

定义 4

​ (time-dependent utopia point)时间相关的乌托邦点(理想点)的定义如下:
U ( t ) = [ min ⁡ v ∈ Ω t f i ( v , t ) ] = [ U i ( t ) ]       i = 1 : M        ( 1 ) U(t)=[\min\limits_{v\in\Omega_t}f_i(v,t)]=[U_i(t)]~~~~~i=1:M~~~~~~(1) U(t)=[vΩtminfi(v,t)]=[Ui(t)]     i=1:M      (1)
Ω t = { v ∈ V , s . t . g ( v , t ) ≤ 0 , h ( v , t ) = 0 } \Omega_t=\{v \in V,s.t.g(v,t)\leq0,h(v,t)=0\} Ωt={ vV,s.t.g(v,t)0,h(v,t)=0}是满足于时间相关的约束的时间相关搜索空间。而理想点在决策空间是如下大小为M × \times ×N(N是搜索空间的维度)的矩阵 [ M v ] [M_v] [Mv]
M v ( i , : ) = [ v ∈ Ω t ,   s . t .   f i ( v ) = U i ] ,       i = 1 : M       ( 2 ) M_v(i,:)=[v \in \Omega_t,~s.t.~f_i(v)=U_i],~~~~~i=1:M~~~~~(2) Mv(i,:)=[vΩt, s.t. fi(v)=Ui],     i=1:M     (2)
如果目标i,j之间没有冲突的话矩阵 [ M v ] [M_v] [Mv]可能出现相等的线(线i,线j)。针对一个双目标问题来说,通过评价如下M × \times ×M的时间相关折衷矩阵能够轻松得到POF(t)上边界的某些初始信息:
[ M ] ( t ) = { U i ( t ) ,          i = j f j ( M v ( i , : ) , t ) ,      o t h e r w i s e ( 3 ) [M](t)=\left\{\begin{array}{c} U_i(t),\;\;\;\; i=j \\ f_j(M_v(i,:),t),~~~~otherwise\end{array}\right. (3) [M](t)={ Ui(t),i=jfj(Mv(i,:),t),    otherwise(3)
只要折衷矩阵计算出来,通过扩展静态情况下的公式从而估计出最差点 R ( t ) R(t) R(t)(nadir point),如下是近似公式:
R i ( t ) = max ⁡ j = 1 : M M ( i , : ) ,        i = 1 : M              ( 4 ) R_i(t)=\max\limits_{j=1:M}M(i,:),~~~~~~i=1:M~~~~~~~~~~~~ (4) Ri(t)=j=1:MmaxM(i,:),      i=1:M            (4)

Test Problem 测试问题

​ 多目标动态问题只处理两个接仍然不同但是又相关的空间:决策空间和目标空间。这里我们提出的几个动态测试问题的搜索空间既有离散的也有连续的。随时间变化有4种测试问题:

Type I)POS改变,POF不变;

Type II)POS,POF均改变;

Type III)POF改变,POS不变;

Type IV)POS、POF均不变,但是该问题仍然是随时间变化的;

POF POS S P S_P SP
F P F_P FP No Change Change
No Change Type IV Type I
Change Type III Type II

而今研究的重点在于前三种类型,虽然现实世界存在但不考虑第四种类型。

​ 虽然动态多目标问题的特点是随时间发生变化,但变化的频率和幅度各有不同。可能是长时间的静态环境之后突发环境变化,也可能是贯穿整个时间轴逐渐发生的小变化。在同一个问题中两者都发生的情况也有一定的概率。本文中我们的测试问题考虑的是第一种情况,在长时间的静态之后突然发生一次变化。

从静态测试问题衍生来的动态测试问题

本文直接扩展双目标的ZDT和可伸缩的DTLZ测试问题用以构造动态测试问题。和目前其他提出的测试算法相比,这些系统性的金泰测试问题迫使研究人员跨越这些障碍,像是不收敛,不连续,具有欺骗性,局部最优前沿的缺失等等,而这些是实际问题中也会出现的。而且在解动态问题时,一些难点会发生相互的转移,从而也构成多目标优化算法的难点。

一个静态ZDT问题的原型如下:
m i n i m i z e f ( x , t ) = ( f 1 ( X I , t ) , g ( X I I , t ) ⋅ h ( X I I I , f 1 ( X I , t ) , g ( X I I , t ) , t ) )      ( 5 ) minimize f(x,t)=(f_1(X_I,t),g(X_{II},t)\cdot h(X_{III},f_1(X_I,t),g(X_{II},t),t))~~~~(5) minimizef(x,t)=(f1(XI,t),g(XII,t)h(XIII,f1(XI,t),g(XII,t),t))    (5)
其中 X I , X I I , X I I I X_{I},X_{II},X_{III} XI,XII,XIII均为决策变量集合 X ∈ Ω t X \in \Omega_t XΩt的子集,而f,g,h三个函数在静态情况下的形式如下:
f 1 ( X I = { x 1 } ) = x 1 g ( x I I ) = 1 + ∑ x i ∈ X I I x i 2 h ( X I I I , f 1 , g ) = 1 − f g }        ( 6 ) \left.\begin{array}{c} f_1(X_I=\{x_1\})=x1 \\ g(x_{II})=1+\sum\limits_{x_i \in X_{II}}x_i^2 \\ h(X_{III},f_1,g)=1-\sqrt\frac{f}{g} \end{array}\right\} ~~~~~~(6) f1(XI={ x1})=x1g(xII)=1+xiXIIxi2h(XIII,f1,g)=1gf       (6)
这三个函数都可能随时间而改变,为例构造更困难的问题,为了解决更困难的问题,在使用上述公式[4]之前,应遵循将真实决策变量矢量y映射到变量矢量的映射过程。接下来介绍我们构造测试问题的不同情形:

情形1

g ( X I I , t ) = 1 + ∑ x i ∈ X I I ( x i − G ( t ) 2 ,   x I I m i n ≤ G ( t ) ≤ x I I m a x     ( 7 ) g(X_{II},t)=1+\sum\limits_{x_i \in X_{II}}(x_i-G(t)^2,~x_{II}^{min}\leq G(t)\leq x_{II}^{max}~~~(7) g(XII,t)=1+xiXII

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值