L3-007. 天梯地图
时间限制
300 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越
本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。
输入格式:
输入在第一行给出两个正整数N(2 <= N <=500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:
V1 V2 one-way length time
其中V1和V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1到V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。
输出格式:
首先按下列格式输出最快到达的时间T和用节点编号表示的路线:
Time = T: 起点 => 节点1 => ... => 终点
然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:
Distance = D: 起点 => 节点1 => ... => 终点
如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。
如果这两条路线是完全一样的,则按下列格式输出:
Time = T; Distance = D: 起点 => 节点1 => ... => 终点
输入样例1:10 15 0 1 0 1 1 8 0 0 1 1 4 8 1 1 1 5 4 0 2 3 5 9 1 1 4 0 6 0 1 1 7 3 1 1 2 8 3 1 1 2 2 5 0 2 2 2 1 1 1 1 1 5 0 1 3 1 4 0 1 1 9 7 1 1 3 3 1 0 2 5 6 3 1 2 1 5 3输出样例1:
Time = 6: 5 => 4 => 8 => 3 Distance = 3: 5 => 1 => 3输入样例2:
7 9 0 4 1 1 1 1 6 1 3 1 2 6 1 1 1 2 5 1 2 2 3 0 0 1 1 3 1 1 3 1 3 2 1 2 1 4 5 0 2 2 6 5 1 2 1 3 5输出样例2:
Time = 3; Distance = 4: 3 => 2 => 5
#include<bits/stdc++.h>
using namespace std;
const int inf=0xffffff;
int d[502],a[502][502],t[502],b[502][502],fa1[502],fa2[502],num[502];
int n,m;
void djs1(int s,int e)
{
for(int i=0;i<n;i++)
{
fa1[i]=-1;
d[i]=inf;
num[i]=1;
}
int v[502]={0};
v[s]=1;
d[s]=0;
for(int i=1;i<n;i++)
{
int sum=inf,g=0;
for(int j=0;j<n;j++)
{
if(v[j]==0&&a[s][j]!=inf&&d[s]+a[s][j]<=d[j])
{
if(d[j]>d[s]+a[s][j])
{
d[j]=d[s]+a[s][j];
num[j]=num[s]+1;
fa1[j]=s;
}
else if(d[j]==d[s]+a[s][j]&&num[j]>num[s]+1)
{
num[j]=num[s]+1;
fa1[j]=s;
}
}
if(v[j]==0&&sum>d[j])
{
sum=d[j];
g=j;
}
}
s=g;
v[s]=1;
}
}
void djs2(int s,int e)
{
for(int i=0;i<n;i++)
{
fa2[i]=-1;
d[i]=inf;
t[i]=inf;
}
int v[502]={0};
v[s]=1;
d[s]=0;
t[s]=0;
for(int i=1;i<n;i++)
{
int sum=inf,g=0;
for(int j=0;j<n;j++)
{
if(v[j]==0&&b[s][j]!=inf)
{
if(t[j]>t[s]+b[s][j])
{
d[j]=d[s]+a[s][j];
t[j]=t[s]+b[s][j];
fa2[j]=s;
}
else if(t[j]==t[s]+b[s][j]&&d[j]>d[s]+a[s][j]&&a[s][j]!=inf)
{
d[j]=d[s]+a[s][j];
fa2[j]=s;
}
}
if(v[j]==0&&sum>t[j])
{
sum=t[j];
g=j;
}
}
s=g;
v[s]=1;
}
}
void dfs1(int x)
{
if(fa1[x]!=-1)
{
dfs1(fa1[x]);
cout<<" => "<<x;
}
else cout<<x;
}
void dfs2(int x)
{
if(fa2[x]!=-1)
{
dfs2(fa2[x]);
cout<<" => "<<x;
}
else cout<<x;
}
int ch(int x)
{
while(1)
{
if(fa2[x]==fa1[x])
{
x=fa2[x];
if(x==-1)
return 1;
}
else return 0;
}
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
a[i][j]=inf;
b[i][j]=inf;
}
}
int x,y,z,f,tt;
int s,e;
for(int i=0;i<m;i++)
{
cin>>x>>y>>z>>f>>tt;
a[x][y]=f;
b[x][y]=tt;
if(z==0)
{
a[y][x]=f;
b[y][x]=tt;
}
}
cin>>s>>e;
djs2(s,e);
int k=t[e];
djs1(s,e);
if(ch(e)==1)
{
cout<<"Time = "<<k<<"; Distance = "<<d[e]<<": ";
dfs2(e);
cout<<endl;
return 0;
}
cout<<"Time = "<<k<<": ";
dfs2(e);
cout<<endl;
cout<<"Distance = "<<d[e]<<": ";
dfs1(e);
}