假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
思想:经典的fibonacci数列,使用循环
代码:
#climbing-stairs
class Solution:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n == 1:
return 1
if n == 2:
return 2
l = [1,2]
for i in range(2,n):
l.append(l[-1] + l[-2])
return l[-1]
使用递归思想:
代码:
class Solution:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n == 1:
return 1
elif n == 2:
return 2
else:
s1 = self.climbStairs(n-1)
s2 = self.climbStairs(n-2)
return s1 + s2
总结:
如果使用循环,程序的性能会更高。如果使用递归,程序更容易理解。
使用DP:优化代码1
class Solution:
def climbStairs(self, n):
l = [1,2]
for i in range(2,n):
l.append(l[i-1] + l[i-2])
return l[n-1]
再优化下空间复杂度:
class Solution:
def climbStairs(self, n):
x,y = 1,1
for _ in range(1,n):
x,y = y,x+y
return y