深度学习
cycyco
这个作者很懒,什么都没留下…
展开
-
pytorch 自定义forward loss运算cpu占用高 在gpu上加速
直接在gpu上定义tensor而减少cpu到gpu的copy!!!为了实现复杂的网络结构和损失函数,自定义forward和loss的计算,发现cpu占用很高,挂了几个训练就占满了所有cpu。把运算都用放到gpu上运算,发现还是cpu占用高,并且有更慢的趋势。用性能分析工具分析发现是 cpu占用时间率高。为了验证是使用了导致的,编写了程序,对比和直接定义,发现时gpu利用率接近100%,而gpu利用率还不到20%。直接在gpu上定义变量...原创 2022-07-11 11:47:31 · 1514 阅读 · 1 评论 -
tensorflow和pytorch指数衰减学习率
参数:公式:decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)公式:lr = lr * gamma**epoch可以看到两者实现有不同,但pytorch实现tensorflow的模式可以利用gamma^decay_steps进行转换原创 2022-07-09 12:04:19 · 413 阅读 · 0 评论 -
保存dataloader状态 恢复中断训练
对于pytorch恢复一个epoch中的中断的训练时,通常dataloader都会从头加载,对于大型数据集不友好,loss又重新下降了这时候可以自定义sampler调用dataloader时传入自定义sampler,指定恢复的step就可以啦!ref也可以用笨方法,空跑到指定的step:...原创 2022-07-09 11:37:19 · 610 阅读 · 0 评论 -
深度学习理论学习笔记
...原创 2021-12-31 09:58:36 · 102 阅读 · 0 评论 -
TensorFlow实践笔记
TensorFlow原创 2021-12-31 09:57:53 · 127 阅读 · 0 评论 -
CVPR 2021 目标检测、跟踪和姿态估计最新进展
微软亚洲研究院 2021 CVPR 论文分享会笔记原创 2021-12-31 09:56:04 · 634 阅读 · 0 评论 -
slurm sbatch 多任务运行 --ntask
-ntasks或-n任务在SLURM中做什么?我在用是slurm,使用一些计算集群-NTASK公司或-n. 我显然已经读过相关文档了http://slurm.schedmd.com/sbatch.html:sbatch不启动任务,它请求分配资源并提交批处理脚本。此选项建议Slurm控制器在分配中运行的作业步骤将启动最多 个任务,并提供足够的资源。默认值是 每个节点一个任务,但是请注意–cpus per task选项将 更改此默认值。我不明白的是:在分配内运行将启动最大数量的任务,并提供足够的资源。原创 2021-01-18 11:47:27 · 11606 阅读 · 2 评论 -
Andrew Ng 《Deep Learning》 Notes
Improving Deep Neural Networks初始化一般的数据集,训练:开发集=7:3;训练:开发:测试=6:2:2大数据集:几万,99:1,开发/测试:1万就够了扩大网络+正则化:减小偏差不增大方差增加数据:减小方差不增大偏差正则化L2一般用L2多于L1通常使用开发集或hold-out交叉验证,来选择正则化参数λ正则化大→w趋于0,则①某些隐藏单元接近0,网络变为更简单的网络;②z=wa+b,z变得很小,tanh激活函数接近线性,网络只能拟合线性函数,不能拟合复杂的原创 2020-12-31 18:10:26 · 202 阅读 · 0 评论 -
Pytorch 学习实践笔记
定义模型class Mynet(nn.原创 2020-12-22 19:54:53 · 530 阅读 · 0 评论 -
EfficientNet 部分源码解读
模型链接:https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.pyHead分类头build: #激活函数 self._relu_fn = (self._block_args.activation_fn or global_params.relu_fn or tf.nn.swish) # Head part. #卷积层原创 2020-12-18 10:29:20 · 1428 阅读 · 1 评论 -
OHEM源码部分
在线难例挖掘OHEM论文Training Region-based Object Detectors with Online Hard Example Mining源码链接https://github.com/abhi2610/ohem基于Fast R-CNN,框架基于CaffeOHEM训练样本生成的部分在/ohem/blob/master/lib/roi_data_layer/minibatch.py里的 get_ohem_minibatch函数def get_ohem_minibatch(lo原创 2020-11-30 16:22:32 · 208 阅读 · 1 评论 -
深度学习目标检测笔记
目标检测两阶段R-CNN生成候选区域selective search:分割成矩形框→合并→不同大小的候选区域缩放到相同大小 得到定长向量CNN提取特征预训练不带框微调(fine-tuning)带框标注(可选)对区域分类分类:线性SVM、softmax边框较准:线性回归。输入特征(?特点:在特征提取时间最长,扩展类别时间没有上升SPP-net空间金字塔池化不需要每个...原创 2020-04-28 18:13:07 · 217 阅读 · 0 评论