运输计划NOIP2015Day2T3

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_38601996/article/details/77767866

运输计划

题目描述

公元 2044 年,人类进入了宇宙纪元。
L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条
航道连通了 L 国的所有星球。
小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物
流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道 是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之 间不会产生任何干扰。
为了鼓励科技创新,L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小 P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。
在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后, 这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的 物流公司的阶段性工作就完成了。
如果小 P 可以自由选择将哪一条航道改造成虫洞,试求出小 P 的物流公司完成阶段 性工作所需要的最短时间是多少?

输入

第一行包括两个正整数 n、m,表示 L 国中星球的数量及小 P 公司预接的运输计划的
数量,星球从 1 到 n 编号。
接下来 n-1 行描述航道的建设情况,其中第 i 行包含三个整数 ai, bi 和 ti,表示第
i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。 接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个
运输计划是从 uj 号星球飞往 vj 号星球。

输出

共 1 行,包含 1 个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

样例输入

6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5

样例输出

11

提示

这里写图片描述

solution:

首先,想到的是一个暴力的做法:枚举哪一条边的权值改为0,然后tarjan求LCA,算出树上最短路,统计答案。时间复杂度O(n²),可以得到50分。11、12个点m=1,可以随便乱搞。13~16是一条链,又是求“最大值最小”,很容易想到二分答案+差分。这样子可以轻松骗到80分。
再来想正解,发现其实一棵树的情况也可以用与一条链类似的方法做。先用tarjan求出LCA,然后还是二分答案,将代价大于mid的询问视为有用询问,没用的询问不用管,差分不再是在一条链上了,要树上差分,即a[x]++,a[y]++,a[LCA(x,y)]-=2,然后递归累加a数组,就可以求出每一条边被几组有用的询问经过。为了使所有的询问代价小于等于mid,而有用询问的代价都是大于mid的,所以只有被所以有用询问经过的边才可能被变为虫洞。为了让最大的代价最小,显然应该将可能变为虫洞的边中权值最大的那条变为虫洞,这样子就可以判断答案了。
时间复杂度O(n+n lg n)=O(n lg n),AC!

code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<vector>
using namespace std;
int MAX,Max,num,l,r,mid,aa[1000005],qx[1000005],qy[1000005],ans,ans1,X[1000005],Y[1000005],Z[1000005],T,n,m,color[1000005],fa[1000005],qa[1000005],qb[1000005],deep[1000005];
vector<pair<int,int> > question[1000005];
vector<pair<int,pair<int,int> > > edge[1000005];
vector<pair<int,int> >::iterator beg[1000005];
bool vis[1000005];
int get(int x){
    if(x==fa[x])
        return x;
    return fa[x]=get(fa[x]);
}
void dfs(int u,int emperor){
    color[u]=1;
    for(vector<pair<int,pair<int,int> > >::iterator i=edge[u].begin();i!=edge[u].end();i++)
        if(!color[i->first]){
            deep[i->first]=deep[u]+i->second.first;
            dfs(i->first,emperor);
            fa[i->first]=u;
        }
    color[u]=2;
    for(vector<pair<int,int> >::iterator i=question[u].begin();i!=question[u].end();i++)
        if(color[i->first]==2)
            i->second=get(i->first);
}
void dfs(int u){
    for(vector<pair<int,pair<int,int> > >::iterator i=edge[u].begin();i!=edge[u].end();i++){
        int v=i->first;
        if(!vis[v]){
            vis[v]=true;
            dfs(v);
            i->second.second=aa[v];
            aa[u]+=aa[v];
        }
    }
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<n;i++)
        scanf("%d%d%d",&X[i],&Y[i],&Z[i]);
    for(int i=1;i<=m;i++)
        scanf("%d%d",&qx[i],&qy[i]);
    for(int i=1;i<n;i++){
        int x=X[i],y=Y[i],z=Z[i];
        edge[x].push_back(make_pair(y,make_pair(z,0)));
        edge[y].push_back(make_pair(x,make_pair(z,0)));
    }
    for(int i=1;i<=m;i++){
        int x=qx[i],y=qy[i];
        qa[i]=x;
        qb[i]=y;
        question[x].push_back(make_pair(y,0));
        question[y].push_back(make_pair(x,0));
    }
    for(int i=1;i<=n;i++)
        fa[i]=i;
    dfs(1,1);
    for(int i=1;i<=n;i++)
        beg[i]=question[i].begin();
    l=0;
    r=1000000000;
    while(l<r){
        mid=(l+r)>>1;
        num=0;
        for(int i=1;i<=n;i++)
            aa[i]=0,vis[i]=false;
        MAX=0;
        for(int i=1;i<=n;i++)
            beg[i]=question[i].begin();
        for(int i=1;i<=m;i++){
            int x,y;
            x=qa[i];
            y=qb[i];
            if(deep[x]+deep[y]-2*deep[max(beg[x]->second,beg[y]->second)]>mid){
                MAX=max(MAX,deep[x]+deep[y]-2*deep[max(beg[x]->second,beg[y]->second)]);
                num++;
                aa[x]++;
                aa[y]++;
                aa[max(beg[x]->second,beg[y]->second)]-=2;
            }
            beg[x]++;
            beg[y]++;
        }
        dfs(1);
        Max=0;
        for(int i=1;i<=n;i++)
            for(vector<pair<int,pair<int,int> > >::iterator it=edge[i].begin();it!=edge[i].end();it++)
                if(it->second.second==num)
                    Max=max(Max,it->second.first);
        if(MAX-Max>mid)
            l=mid+1;
        else
            r=mid;
    }
    printf("%d\n",r);
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页