Atcoder agc024E

博客详细探讨了Atcoder AGC024E问题的解决方案,重点在于如何从给定序列中删除字符,使得相邻字符不相等,并计算不同删除方案的数量。通过设定F[i][j]表示长度为i且元素在1到j之间的序列的不同删除方案,利用组合数进行状态转移,避免了四次方的时间复杂度,实现了O(N²K)的时间复杂度优化。
摘要由CSDN通过智能技术生成

倒着考虑,从一个给定的 A N A_N AN不断删除字符能得到多少种不同的方案。为了不计重复,我们要求每次删掉一个字符 x i x_i xi时,满足 x i + 1 ≠ x i x_{i+1}\neq x_i xi+1=xi,那么合法的条件是 ∃ j ≥ i , x i = x i + 1 = . . . = x j , x j + 1 < x i \exist j\geq i,x_i=x_{i+1}=...=x_j,x_{j+1}<x_i ji,xi=xi+1=...=xj,xj+1<xi(假设最后补一个 0 0 0)。
考虑计数,设 F [ i ] [ j ] F[i][j] F[i][j]表示当前序列长度为 i i i,元素在 1 1 1 j j j之间,枚举最后一个删掉的位置为 k k k,权值为 l l l,那么 1 1 1 k − 1 k-1 k1间的元素均大于 l l l,而 k + 1 k+1 k+1 i i i间无限制,两部分互相独立,可以用组合数合并。直接转移是四次方的,但注意到 l l l与后半部分无关,可以预处理转移加速。
时间复杂度 O ( N 2 K ) \mathcal O(N^2K) O(N2K)

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int MOD;

ll C[305][305];
int f[305][305],sum[305][305];

void pre(int n) {
  for(int i=0;i<=n;i++) C[i][0]=1;
  for(int i=1;i<=n;i++)
    for(int j=1;j<=i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
}

int main() {
  int n,k;
  scanf("%d%d%d",&n,&k,&MOD);
  pre(n);
  for(int i=1;i<=k+1;i++) {
  	f[0][i]=1;
  	sum[0][i]=i;
  }
  for(int i=1;i<=n;i++) {
  	for(int j=1;j<=k+1;j++)
  	  for(int l=1;l<=i;l++) 
		f[i][j]=(f[i][j]+(ll)sum[l-1][j-1]*f[i-l][j]%MOD*C[i-1][l-1])%MOD;
  	for(int j=1;j<=k+1;j++) sum[i][j]=(sum[i][j-1]+f[i][j])%MOD;
  }
  printf("%d\n",f[n][k+1]);
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值