数据可视化
文章平均质量分 97
python进行数据可视化
云天徽上
机器学习爱好者
展开
-
【数据可视化-07】波士顿房价预测数据分析
通过本次波士顿房价预测项目,我们深入探索了数据可视化在房价预测中的应用。通过绘制散点图、相关性矩阵、箱线图、直方图和密度图等多种可视化图表,我们成功地揭示了房价与各特征之间的关系及趋势。同时,我们也发现了数据中存在的一些异常值和潜在问题,并提出了相应的处理建议。在模型训练方面,我们选择了合适的预测模型,并通过调整模型参数和优化算法来提高模型的预测性能。最终,我们得到了一个具有较高预测精度的房价预测模型,可以为房地产市场的投资者和决策者提供有价值的参考信息。原创 2024-05-23 13:58:47 · 6250 阅读 · 236 评论 -
【数据可视化-06】--- 北京某平台二手房可视化数据分析
通过对北京某平台二手房数据的可视化分析,我们可以得出以下结论:北京二手房市场的价格呈现出明显的分布特点,不同价格区间的房屋数量和价格水平存在差异。房屋面积在北京二手房市场中也存在一定的分布特点,不同面积区间的房屋数量和面积大小有所差异。北京各区域的二手房分布不均,一些热门区域的房源较多,价格也相对较高。这些分析结果可以为购房者提供有价值的信息和参考,帮助他们更好地了解市场情况,做出明智的购房决策。同时,对于投资者来说,这些数据分析也可以提供市场趋势和投资机会的线索。原创 2024-03-23 14:38:28 · 2650 阅读 · 25 评论 -
【数据可视化-05】:Plotly数据可视化宝典
Plotly是一个基于Web的数据可视化库,它支持多种编程语言,包括Python、R、JavaScript等。Plotly具有强大的图表定制能力、丰富的图表类型和交互功能,广泛应用于数据分析、科学研究和机器学习等领域。Plotly的历史可以追溯到2012年,由克里斯·帕特尔(Chris Plotly)等人创建。经过多年的发展,Plotly已经成为数据可视化领域的佼佼者之一。Plotly作为一款功能强大的数据可视化库,在机器学习项目中发挥着重要作用。原创 2024-05-15 18:11:00 · 4557 阅读 · 231 评论 -
【数据可视化-04】Pyecharts数据可视化宝典
Pyecharts提供了丰富的配置项和参数,用于自定义图表的样式、布局等。标题配置:使用title_opts参数配置图表的标题,包括标题文本、位置、颜色等。坐标轴配置:使用xaxis_opts和yaxis_opts参数配置X轴和Y轴的样式和属性,如标签、刻度线、分割线等。数据项配置:使用和等方法添加数据到图表中,并可以配置数据项的样式和属性,如颜色、标记符号等。全局配置项:使用方法配置图表的全局样式和布局,如标题、图例、背景色等。其他配置项。原创 2024-05-12 18:51:35 · 9649 阅读 · 210 评论 -
【数据可视化-03】Pandas图形实战宝典
在数据可视化中,自定义图形样式是提升图表可读性和美观性的重要手段。Pandas通常结合Matplotlib库进行绘图,而Matplotlib提供了丰富的API来自定义图形的各种属性。颜色:可以通过设置color参数来自定义线条、标记、区域等的颜色。线型:可以通过设置linestyle或ls参数来自定义线条的类型,如实线、虚线、点线等。标签:可以通过设置xlabelylabel和title参数来添加或修改坐标轴和标题的标签。原创 2024-05-09 19:59:07 · 9816 阅读 · 231 评论 -
【数据可视化-02】Seaborn图形实战宝典
Seaborn是一个基于Python的数据可视化库,它建立在matplotlib的基础之上,为统计数据的可视化提供了高级接口。Seaborn通过简洁美观的默认样式和绘图类型,使数据可视化变得更加简单和直观。它特别适用于那些想要创建具有吸引力且信息丰富的统计图形的数据科学家和数据分析师。集成性:Seaborn与pandas数据结构紧密结合,使得数据分析和可视化可以无缝衔接。美观性:Seaborn提供了精心设计的默认样式和调色板,使得图形更具吸引力。统计绘图。原创 2024-05-06 20:40:57 · 12511 阅读 · 239 评论 -
【数据可视化-01】Matplotlib图形实战宝典
本文将介绍如何使用matplotlib绘制折线图、直方图、饼图、散点图和柱状图等数据分析中常见的图形,并附上相应的代码示例,可以当初matplotlib函数库来使用,将案列中的数据替换成自己真实的数据即可绘制出符合条件的图像。下面封装的ineChartPlotter类,是为绘制不同种类的折线图,有draw_line_chart、draw_line_ndims_one_dim和draw_nline_chart方法,具体的作用参看图片即可了解;最后,我们设置了X轴和Y轴的刻度标签,并为图表添加了标题。原创 2024-05-01 23:37:03 · 11295 阅读 · 207 评论