筛选法求素数(高效)——例题:孪生素数问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_38620461/article/details/74560389
描述 写一个程序,找出给出素数范围内的所有孪生素数的组数。一般来说,孪生素数就是指两个素数距离为2,近的不能再近的相邻素数。有些童鞋一看到题就开始写程序,不仔细看题,咱们为了遏制一下读题不认真仔细的童鞋,规定,两个素数相邻为1的也成为孪生素数。
输入
第一行给出N(0<N<100)表示测试数据组数。
接下来组测试数据给出m,表示找出m之前的所有孪生素数。
(0<m<1000000)
输出
每组测试数据输出占一行,该行为m范围内所有孪生素数组数。
样例输入

114

样例输出

4

筛选法求素数原理:当i是素数的时候,i的所有的倍数必然是合数。

    一个简单的筛素数的过程:n=30。

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

   

    第 1 步过后2 4 ... 28 30这15个单元被标成false,其余为true。

    第 2 步开始:

     i=3;  由于prime[3]=true, 把prime[6], [9], [12], [15], [18], [21], [24], [27], [30]标为false.

     i=4;  由于prime[4]=false,不在继续筛法步骤。

     i=5;  由于prime[5]=true, 把prime[10],[15],[20],[25],[30]标为false.

     i=6>sqrt(30)算法结束。

    第 3 步把prime[]值为true的下标输出来:

     for(i=2; i<=30; i++)

     if(prime[i]) printf("%d ",i);

    结果是 2 3 5 7 11 13 17 19 23 29


例题地址:点击打开链接
#include <bits/stdc++.h>//筛选法求素数
using namespace std;
#define N 1000001
bool prime[N];
int main()
{
    int i,j,t,n,sum,a;
    for(i=2;i<N;i++)//首先偶数一定不是素数
    {
        if(i%2)
            prime[i]=true;
    else
        prime[i]=false;
    }
    for(i=3;i<=sqrt(N);i++)
        {
            if(prime[i])
            for(j=i+i;j<N;j=j+i)//当i是素数的时候,i的所有的倍数必然是合数
            prime[j]=false;
        }
    scanf("%d",&t);
    while(t--)
    {
        a=0;
        sum=0;
        scanf("%d",&n);
        for(i=3;i<=n;i++)
        {
            if(prime[i])
            {
                if(i-a<=3)
                {
                    sum++;
                }
                a=i;
            }
        }
        printf("%d\n",sum);
    }
    return 0;
}


阅读更多

没有更多推荐了,返回首页