素数筛法及习题

引入

素数是指只能被1和自身整除的数

  • 初学编程的时候,只根据这个素数的这个定义,我们能够写出简单的判断素数或者素数打表的程序,大概如下
bool Is_prime(int n){
    if(n == 2) return true;
    if(n == 1||n % 2 == 0) return false; 
    for(int i = 3;i < n;i+=2) if(n % i == 0) return false;
    return true;
}
void Prime(int n){
    int tot = 0;
    for(int i=2;i<=n;i++){
        if(Is_prime(i)){
            p[tot++] = i;
        }
    }
}
  • 后来又知道判断n的因子的时候不需要一直到n,只需要到根号n即可,所以可做优化如下
bool Is_prime(int n){
    if(n == 2) return true;
    if(n == 1||n % 2 == 0) return false; 
    for(int i = 3;i <= sqrt(n);i+=2) if(n % i == 0) return false;
    return true;
}
void Prime(int n){
    int tot = 0;
    for(int i=2;i<=n;i++){
        if(Is_prime(i)){
            p[tot++] = i;
        }
    }
}
  • 这算不上筛法,只能算一种方法,它的时间复杂度大概是O(n√n),当n到达106时,计算效率已经不可接受,需要寻求更好的方法

埃拉托色尼筛法

  • 埃氏筛的核心思想在于用前面的质数去筛掉后面的数,根据算数基本定理,任何一个大于1的非质数都能分解成有限个质数乘积的形式
  • 简单而言,就是用2筛掉它的所有倍数,用3筛它的所有倍数,用5筛它的所有倍数,一直往后
  • 那么程序应该可以写出来
void Prime(int n){
    int tot = 0;
    for(int i=2;i<=n;i++){
        if(!vis[i]) p[tot++] = i;
        for(int j=2*i;j<=n;j+=i){
            vis[j] = 1;
        }
    }
}
  • 可以做两个简单的优化,第一个,找因子的时候到√n就可以了;第二个,j从i*i开始,因为前面的已经算过了,比如i=4的时候,2*4,3*4在i=2和3的时候分别筛过,所以不需要再筛
void Prime(int n){
    int tot = 0;
    for(int i=2;i*i<=n;i++){
        for(int j=i*i;j<=n;j+=i){
            vis[j] = 1;
        }
    }
    for(int i=2;i<=n;i++){
        if(!vis[i]) p[tot++] = i;
    }
}
  • 此筛法时间复杂度为O(nlog2(log2(n)))

欧拉筛法

  • 埃氏筛存在一个问题,比如12这个数,它会被2和3分别筛掉一次,这样就造成了一种浪费,那么能不能把这个浪费去掉呢?
  • 相对于12来说,2和3都是它的因子,那么如果想去掉一个,那么一定是3,因为我们是从小往大筛的,所以每次只用它的最小质因子筛,这样就可以做到只筛一次
  • 这种筛法是线性的,所以也叫线性筛法
void Prime(int n){
    int tot = 0;
    for(int i = 2;i <= n;i++){
        if(!vis[i]) p[tot++] = i;
        for(int j = 0;j < tot&&i*p[j] <= n;j++){
            vis[i*p[j]] = 1;
            if(i % p[j] == 0) break;
        }
    }
}
  • 如果找到最小质因子那么break

习题

首先先是模板题
n范围是108,只能线性筛

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iomanip>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
const int MAXN = 1e8+100;
int Data[MAXN];
int p[MAXN];
int vis[MAXN];
void Prime(int n){
    int tot = 0;
    for(int i = 2;i <= n;i++){
        if(!vis[i]) p[tot++] = i;
        for(int j = 0;j < tot&&i*p[j] <= n;j++){
            vis[i*p[j]] = 1;
            if(i % p[j] == 0) break;
        }
    }
}
int main(){
    int n,q;
    scanf("%d%d",&n,&q);
    Prime(n);
    while(q--){
        scanf("%d",&n);
        printf("%d\n",p[n-1]);
    }
    return 0;
}

hdu1262

  • 从偶数一半开始找,素数预先打表,查找的时候二分查找即可
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iomanip>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
const int MAXN = 2e5+100;
int Data[MAXN];
int p[MAXN];
int vis[MAXN];
void init(int n){
    int tot = 0;
    for(int i=2;i<=n;i++){
        if(!vis[i]) p[tot++] = i;
        for(int j=0;i*p[j]<=n&&j<tot;j++){
            vis[i*p[j]] = 1;
            if(i%p[j] == 0) break;
        }
    }
}
int main(){
    init(20000);
    int m;
    while(cin>>m){
        int t = m/2;
        int pos = lower_bound(p, p + 2000, t) - p;
        while(true){
            if(binary_search(p, p + 2000, m - p[pos])){
                cout<<m - p[pos]<<" "<<p[pos]<<endl;
                break;
            }
            pos++;
        }
    }
    return 0;
}

codeforces div2 B题
给定一个数d,现在要求一个可能的最小数a,使得a至少有4个除数,且除数之间距离最少是d

  • 首先1和a一定是a的除数,那么至少还剩下两个除数,要想使除数之间距离最少是d,那么这两个除数必须是质数,假设它们是合数,那么根据算数基本定理,它们能分解成若干质数乘积,这些质数也是a的除数,这样除数之间距离又减小了;那么能不能有两个以上的除数呢?首先他们都是质数,如果是这样,那么a就是它们三个的乘积,这种情况求出的a不是最小值
  • 所以首先要打素数表,找到第一个大于等于d+1的值,再找到第二个大于等于第一个值+d的值,乘积即为a
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iomanip>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
const int MAXN = 1e5+100;
int p[MAXN];
int vis[MAXN];
void Prime(int n){
    int tot = 0;
    for(int i = 2;i <= n;i++){
        if(!vis[i]) p[tot++] = i;
        for(int j = 0;j < tot&&i*p[j] <= n;j++){
            vis[i*p[j]] = 1;
            if(i % p[j] == 0) break;
        }
    }
}
int main(){
    int t,d;
    Prime(50000);
    cin>>t;
    while(t--){
        cin>>d;
        int a = p[lower_bound(p, p + 10000, d + 1) - p];
        int b = p[lower_bound(p, p + 10000, a + d) - p];
        cout<<(1LL) * a * b<<endl;
    }
    return 0;
}

还有一道题未完待续

2021年9月11日更新

这道题给出了一个函数 f ( i ) f(i) f(i),意义是它能拆成几个非平方数( 1 1 1不算)的乘积,举个例子 6 = 1 × 6 = 6 × 1 = 2 × 3 = 3 × 2 6=1\times6=6\times1=2\times3=3\times2 6=1×6=6×1=2×3=3×2但是 4 4 4只能拆成 2 × 2 2\times2 2×2

  • 可以这样考虑,数据范围是 2 e 7 2e7 2e7,可以将问题转化为求 a b ≤ n ab\leq n abn的情况数,那么可先预处理出范围内所有的没有平方数因子的数,将其作为 a a a,之后枚举每一个 b b b求其方法数,再求和,这样时间复杂度可以降到很低
  • 详细解释一下,比如说现在 a = 1 a=1 a=1,那么 n a = n \frac{n}{a}=n an=n,这里面有多少种情况呢?显然是有 1 × 2.... n 1\times2....n 1×2....n这些情况,但是要去除掉平方数,而这些信息在预处理的时候已经完成了
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <iomanip>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e7 + 100;
const double eps = 1e-6;
int p[MAXN];
int vis[MAXN];
int sum[MAXN];
ll MAX = 2e7;
int solve(){
    int tot = 0;
    for(ll i=2;i*i<=MAX;i++){
        for(int j=i*i;j<=MAX;j+=i*i){
            vis[j] = 1;
        }
    }
    for(int i=1;i<=MAX;i++){
        if(!vis[i]){
            sum[i] = sum[i - 1] + 1;
            p[tot++] = i;
        }else{
            sum[i] = sum[i - 1];
        }
    }
    return tot;
}
int main(){
    #ifdef LOCAL
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
    #endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int t, n;
    int len = solve();
    cin >> t;
    while(t--){
        cin >> n;
        ll ans = 0;
        for(int i=0;i<len && p[i] <= n;i++){
            ans += sum[n / p[i]];
        }
        cout << ans << '\n';
    }
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clarence Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值