# AreYouBusy

#### Problem Description

Happy New Term!
As having become a junior, xiaoA recognizes that there is not much time for her to AC problems, because there are some other things for her to do, which makes her nearly mad.
What's more, her boss tells her that for some sets of duties, she must choose at least one job to do, but for some sets of things, she can only choose at most one to do, which is meaningless to the boss. And for others, she can do of her will. We just define the things that she can choose as "jobs". A job takes time , and gives xiaoA some points of happiness (which means that she is always willing to do the jobs).So can you choose the best sets of them to give her the maximum points of happiness and also to be a good junior(which means that she should follow the boss's advice)?

#### Input

There are several test cases, each test case begins with two integers n and T (0<=n,T<=100) , n sets of jobs for you to choose and T minutes for her to do them. Follows are n sets of description, each of which starts with two integers m and s (0<m<=100), there are m jobs in this set , and the set type is s, (0 stands for the sets that should choose at least 1 job to do, 1 for the sets that should choose at most 1 , and 2 for the one you can choose freely).then m pairs of integers ci,gi follows (0<=ci,gi<=100), means the ith job cost ci minutes to finish and gi points of happiness can be gained by finishing it. One job can be done only once.

#### Output

One line for each test case contains the maximum points of happiness we can choose from all jobs .if she can’t finish what her boss want, just output -1 .

3 3
2 1
2 5
3 8
2 0
1 0
2 1
3 2
4 3
2 1
1 1

3 4
2 1
2 5
3 8
2 0
1 1
2 8
3 2
4 4
2 1
1 1

1 1
1 0
2 1

5 3
2 0
1 0
2 1
2 0
2 2
1 1
2 0
3 2
2 1
2 1
1 5
2 8
3 2
3 8
4 9
5 10

#### Sample Output

5
13
-1
-1

2随意，拿或者不拿，选其中多少都可以

1最多选一个

0至少选一个

题目给了很多类别的物品。用数组dp[i][j],表示第i组，时间为j时的快乐值。每得到一组工作就进行一次DP，所以dp[i]为第i组的结果。

dp[i][j]: 是不选择当前工作；

dp[i-1][k-c[j]]+g[j]：第一次在本组中选物品，由于开始将该组dp赋为了负无穷，所以第一次取时，必须由上一组的结果推知，这样才能保证得到全局最优解；

dp[i][k-c[j]]+g[j]：表示选择当前工作，并且不是第一次取;

第三类（01背包），任意选，即不论选不选，选几个都可以。

#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
int dp[105][105];
int main()
{
int n,t,m,s;
int c[105],g[105];
while(~scanf("%d%d",&n,&t))
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d%d",&m,&s);
for(int j=1;j<=m;j++)
{
scanf("%d%d",&c[j],&g[j]);
}
if(s==0)
{
for(int j=0;j<=t;j++)
{
dp[i][j]=-INF;
}
for(int j=1;j<=m;j++)
for(int k=t;k>=c[j];k--)
{
dp[i][k]=max(max(dp[i][k-c[j]]+g[j],dp[i][k]),dp[i-1][k-c[j]]+g[j]);
}
}
if(s==1)
{
for(int j=0;j<=t;j++)
{
dp[i][j]=dp[i-1][j];
}
for(int j=1;j<=m;j++)
for(int k=t;k>=c[j];k--)
{
dp[i][k]=max(dp[i-1][k-c[j]]+g[j],dp[i][k]);
}
}
if(s==2)
{
for(int j=0;j<=t;j++)
{
dp[i][j]=dp[i-1][j];
}
for(int j=1;j<=m;j++)
for(int k=t;k>=c[j];k--)
{
dp[i][k]=max(dp[i][k-c[j]]+g[j],dp[i][k]);
}
}
}
dp[n][t]=max(dp[n][t],-1);
printf("%d\n",dp[n][t]);
}
return 0;
}