Faster-RCNN详解

1 Faster-RCNN

(1)输入测试图像;

(2)将整张图片输入CNN,进行特征提取;

(3)用RPN生成建议窗口(proposals),每张图片生成300个建议窗口;

(4)把建议窗口映射到CNN的最后一层卷积feature map上;

(5)通过RoI pooling层使每个RoI生成固定尺寸的feature map;

(6)利用Softmax Loss(探测分类概率) 和Smooth L1 Loss(探测边框回归)对分类概率和边框回归(Bounding box regression)联合训练.
在这里插入图片描述

1.1 Conv layers

包含了conv,pooling,relu三种层

1.1.1 VGG

Conv layers部分共有13个conv层,13个relu层,4个pooling层。这里有一个非常容易被忽略但是又无比重要的信息,在Conv layers中:

  • 所有的conv层都是: k e r n e l _ s i z e = 3 kernel\_size=3 kernel_size=3 p a d = 1 pad=1 pad=1 s t r i d e = 1 stride=1 stride=1
  • 所有的pooling层都是: k e r n e l _ s i z e = 2 kernel\_size=2 kernel_size=2 p a d = 0 pad=0 pad=0 s t r i d e = 2 stride=2 stride=2
  • Conv layers中的conv层不改变输入和输出矩阵大小
    在这里插入图片描述

1.2 Region Proposal Networks(RPN)

在这里插入图片描述

  • 遍历Conv layers计算获得的feature maps,为每一个点都配备这9种anchors作为初始的检测框,检测框不准确,还需要精修。
    图三
  1. 在原文中使用的是ZFmodel中,其Conv Layers中最后的conv5层num_output=256,对应生成256张特征图,相当于一张feature map每个点用256-D的特征表示。
  2. 由于输入图像M=800,N=600,且Conv Layers做了4次Pooling,feature map的长宽为[M/16, N/16]=[50, 38]
  3. 在conv5之后,做了rpn_conv/3x3卷积,num_output=256,相当于每个点使用了周围3x3的空间信息,同时256-d不变,如图3红框,同时对应图4中的红框中的3x3卷积
  4. 假设一共有k个anchor,而每个anhcor要分foreground和background,所以cls=2k scores;而每个anchor都有[x, y, w, h]对应4个偏移量,所以reg=4k coordinates

在这里插入图片描述

  • 第一个支路:18表示 2 ∗ 9 2*9 29,foreground和background,9个锚框
    • caffe的数据结构:blob=[batch_size, channel,height,width]
    • reshape前在caffe blob中的存储形式为[1, 18, H, W]
    • reshape后在caffe blob中的存储形式为[1, 2, 9*H, W],单独“腾空”出来一个维度以便softmax分类
    • 经过softmax后再reshape恢复原状
  • 第二个支路:36表示 4 ∗ 9 4*9 49,[x, y, w, h]对应4个偏移量,9个锚框

其实RPN就是在原图尺度上,设置了密密麻麻的候选Anchor。然后用cnn去判断哪些Anchor是里面有目标的foreground anchor,哪些是没目标的backgroud,仅仅是个二分类。

anchor

原图800x600,VGG下采样16倍,feature map每个点设置9个Anchor:
在这里插入图片描述
其中ceil()表示向上取整,是因为VGG输出的feature map size= 50*38。

1.3 bounding box regression

绿色框为飞机的Ground Truth(GT),红色为提取的foreground anchors,即便红色的框被分类器识别为飞机,但是由于红色的框定位不准,这张图相当于没有正确的检测出飞机。所以我们希望采用一种方法对红色的框进行微调,使得foreground anchors和GT更加接近。
在这里插入图片描述
对于窗口一般使用四维向量 ( x , y , w , h ) (x, y, w, h) (x,y,w,h)表示,分别表示窗口的中心点坐标和宽高。红色的框A代表原始的Foreground Anchors,绿色的框G代表目标的GT,我们的目标是寻找一种关系,使得输入原始的anchor A经过映射得到一个跟真实窗口G更接近的回归窗口G’。

  • 给定: a n c h o r A = ( A x , A y , A w , A h ) anchor A=(A_{x}, A_{y}, A_{w}, A_{h}) anchorA=(Ax,Ay,Aw,Ah) G T = [ G x , G y , G w , G h ] GT=[G_{x}, G_{y}, G_{w}, G_{h}] GT=[Gx,Gy,Gw,Gh]
  • 寻找一种变换F,使得: F ( A x , A y , A w , A h ) = ( G x ′ , G y ′ , G w ′ , G h ′ ) F(A_{x}, A_{y}, A_{w}, A_{h})=(G_{x}^{'}, G_{y}^{'}, G_{w}^{'}, G_{h}^{'}) F(Ax,Ay,Aw,Ah)=(Gx,Gy
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值